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Abstract

Using a novel proprietary survey of UK manufacturing sites, we study the impact on
employment of arguably the two most important industrial automation technologies of
the past fifty years: computer numerical control (CNC) machine tools and industrial
robots. First, we document the growing prevalence of both technologies across a wide
range of industries between 2005 and 2023. Second, we use a local-projection difference-
in-difference design to show that plants that adopt these technologies for the first time
increase their employment by 6% to 9% compared to non-adopting plants in the same
industry. Third, we find that for both technologies, automation is associated with an
increase in employment among industry-competitor sites, and a positive overall impact
on industry-level employment.
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1 Introduction

How does automation affect employment? Recent advances in artificial intelligence have

heightened both hopes and fears about the consequences of technological progress for work-

ers and society more broadly. There is widespread concern that new technologies will dis-

place workers, leading not just to temporary disruption, but to a secular decline in labour

demand, putting downward pressure on wages and employment. And yet, historically, such

displacement effects have typically been accompanied by improvements in productivity and

the creation of new products and labour-intensive tasks, driving up the demand for labour

(Autor 2015). Which of these channels dominates is fundamentally an empirical question.

In this paper, we examine how the widespread adoption of computer numerical control

(CNC) machine tools and industrial robots in the UK economy since 2005 affected employ-

ment. CNC machines are programmable tooling devices that cut, drill, or shape materials

(typically metals) into precisely defined components. They have been widely available since

the 1980s and play a foundational role in modern manufacturing. Industrial robots, by con-

trast, are programmable machines designed to manipulate objects with considerable spatial

flexibility. They typically operate across multiple axes using motors and sensors to guide

their movements, and are commonly used for tasks such as assembly, welding, packaging,

and material handling. While CNC machines are generally used to transform raw materials

into components through precision machining, industrial robots are more often deployed in

later stages of production to assemble or move those components. Together, these technolo-

gies represent two of the most important and widely used forms of industrial automation in

recent decades.

This paper makes three main contributions. First, we introduce novel evidence on the

use of these manufacturing technologies from a proprietary survey of manufacturing estab-

lishments in the United Kingdom between 2005 and 2023. This dataset, produced by the

Mark Allen Group, contains information on plant-level stocks of CNC machine tools and

(from 2014) indicators for the use of industrial robots on site. Crucially for our purposes, it

also includes site-level information about total employment and, separately, the number of

workers by broad occupational groups, including manufacturing workers.

We establish that our dataset is broadly representative of the UK manufacturing sector,

closely tracking statistics obtained from the UK’s statistical agency, the Office for National

Statistics (ONS). We also document an increase in the use of both technologies over the

period we study: the share of manufacturing production plants using CNC machines in-

creased from about 46% in 2004 to nearly 56% in 2023, while the share of employees who

work in such establishments increased from about 52% to 62%. We find that the share of
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plants using industrial robots has increased from about 4% in 2014 to 6% in 2023, while the

share of employees working in such plants increased from around 15% to more than 25%,

indicating that robot adoption has been skewed towards large plants.

Second, we use modern differences-in-differences event study methods to study the impact

of CNC machine and industrial robot adoption at the extensive margin on a firm’s workforce.

In our preferred specification, we find that plants that adopt CNC machines for the first time

increase their total employment by about 6% over the subsequent four years, compared to

non-adopting plants in the same industry. Plants that adopt industrial robots for the first

time also see employment increase by around 8% in the years following adoption. We find that

treated plants which experience an “adoption event” exhibit broadly similar pre-treatment

trends to those that do not; while the substantial cost and planning involved in adopting

such technologies makes it unlikely that our results are being driven by contemporaneous

shocks affecting both technology adoption and employment. Unlike much of the literature,

we do not find any significant impact on the share of manufacturing workers after adoption

events.

For CNC machines, we can also look at the impact of “expansion events”, which occur

when a plant increases the total number of CNC machines from an already positive number.

We find that these events are associated with a larger increase in total plant employment

than initial adoption, and a notable reduction in the share of manufacturing workers. This

pattern is consistent with a learning-based view of technology adoption, in which experienced

firms are better able to take advantage of new technologies, leading both to larger gains in

productivity and employment, and a deeper reorganisation of their production processes (e.g.

Atkeson and Kehoe 2007).

Third, we explore the dynamics of worker reallocation across companies and industries.

We first look at the impact of firm-level automation events on employment among competi-

tors firms within the same industry. We find evidence of positive spillovers, in the sense that

adoption in one plant is associated with an expansion of employment among peer firms. In

order to capture the overall impact of automation on industry level employment, we adapt

our main event-study specification to study industry-level automation events, defined as

a relatively large annual change in the share of employees working in companies that use

a given technology, compared to all year-on-year changes. Although our results vary de-

pending on the threshold used to define an industry level event, we find positive industry

level employment effects in all specifications, with varying degrees of statistical significance.

These results suggest that, at least in the UK manufacturing context, the broader effects of

automation on employment may be more benign than is often feared.
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Related Literature. Our paper contributes to a small but growing empirical literature

that uses firm-level data to look at the labour market effects of various modern technologies

(for a recent overview see Aghion et al. (2023a) and Restrepo (2024)). The papers in this

literature span a range of countries and recent time-periods, and study a variety of technolo-

gies, with a particular focus on industrial robots. Most use event-study designs similar to

our own, though a handful combine this with a more explicitly causal approach.1

As in our study, this literature consistently finds that investment in new technologies is

associated with an increase in total employment at focal (adopting) companies (Aghion et al.

2023a).2 The literature is more divided when it comes to the impact on specific occupational

groups. Most studies, including all those looking at industrial robots, find that investment in

new technologies is associated with a reduction in employment (and in some cases wages) for

“exposed” occupations, typically lower-skilled and/or manufacturing workers (Bessen 2019,

Humlum 2021, Acemoglu and Restrepo 2020); but other recent studies find no evidence of

differential effects on different skill groups (Curtis et al. 2021, Hirvonen et al. 2023, Aghion

et al. 2023c). Our results – that expansion but not adoption events are associated with

a decline in the share of manufacturing workers – suggest that the impact of automation

technologies on exposed groups of workers may increase as companies accumulate experience

with a given technology.

While the studies discussed above examine the effects of technology adoption within

firms, a largely separate literature focuses on the impact of automation on employment

at the industry or labour market level. This literature has produced mixed results. For

example, Acemoglu and Restrepo (2020) find that the addition of one industrial robot per

1,000 workers in U.S. commuting zones reduces the employment-to-population ratio by 0.4

percentage points; whereas Dauth et al. (2021), using a similar approach in Germany, find

no adverse effect on regional employment. At the cross-country level, Graetz and Michaels

(2018) find no aggregate employment effect of robot adoption across 17 developed economies,

while Klenert et al. (2023), using similar methods for 14 European countries, find positive

correlations between robot adoption and employment. Other studies, such as Webb (2020),

Mann and Püttmann (2023), Kogan et al. (2023), use patent-based measures of exposure to

assess occupational risk, but also reach inconsistent conclusions about aggregate employment

effects. The only previous study to focus specifically on CNC adoption at the industry

1Aghion et al. (2023c) use a shift-share IV design leveraging pre-determined supply linkages and productivity
shocks. Hirvonen et al. (2023) use a quasi-experimental design comparing companies that secured access to
a government subsidy programme with those that narrowly lost out.

2Studies which also have access to information about firm-level sales and productivity find that this increase
in employment is associated with rising sales and productivity. Some of these studies also look at the impact
on wages, and typically find no significant effect.
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level is Boustan et al. (2022), who find that industries more exposed to CNC technologies

experienced increases in investment, productivity, and employment, with gains for college-

educated workers offsetting losses among less-educated ones.

We see our contributions to this literature as threefold.

First, we are able to exploit direct plant-level measures of two critical automation tech-

nologies: CNC machines and industrial robots. Most recent papers with access to firm-level

data rely on composite measures of technology such as the total value of manufacturing cap-

ital (Aghion et al. 2023b,c) or investment in third party automation services (Bessen et al.

2023). As Aghion et al. (2023c) argue, these broad measures can help give us a sense of the

impact of typical investments in manufacturing capital. But the impact of new technologies

depends critically on their particular characteristics, and the degree to which they are used

to displace workers rather than, say, create new products. A better understanding of the

effects of modern technologies on labour markets must study the characteristics and abilities

of specific technologies. Moreover, while there is now a fairly large literature looking at the

impact of industrial robots, studies of CNC technology are surprisingly rare, given their huge

importance for modern manufacturing. To the best of our knowledge, ours is the first paper

to use firm-level data on CNC use across a wide range of industries.3

A further advantage of our data is that we can isolate adoption events, when a plant

starts using a given technology for the first time, and in the case of CNC machines dis-

tinguish them from “expansion” events, when plants increase their use of CNC machines

from an already positive baseline. Other papers, which typically use price-based measures

of technology investment, cannot distinguish investment at the extensive margin – which

involves the deployment of a new machine in tasks previously performed by humans, and is

the canonical definition of automation, at least within the task framework – from investment

at the intensive margin, which seeks to increase the productivity of capital in existing tasks.

Our focus on adoption events, then, provides a cleaner empirical analogue to automation.

At the same time, being able to compare the effects of adoption and expansion for CNC

machines allows us to test the predictions of learning-based models of technological change

(Atkeson and Kehoe 2007).4

3Of the two recent papers focused on CNC machines, Boustan et al. (2022) only have access to industry level
data, while Bartel et al. (2007) have access to plant-level data for the US valve manufacturing sector only.
Bartel et al. (2007) find that plants adopting CNC tools improve the efficiency of all stages of the production
process by reducing setup times, run times, and inspection times; see increases in the skill requirements of
machine operators and the adoption of new human resource practices; and shift their business strategies
towards more customized products.

4Another advantage of measuring technology use directly is that changes in price-based measures may simply
reflect shifting prices rather than changes in technology use in a given company. A downside is that we are
unable to account for changes in the quality of machines across firms or over time.
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Our second key contribution is to provide a unified analysis of the implications of tech-

nology adoption at the firm and industry levels. This is clearly not possible for papers using

aggregate-level data, while many papers with firm-level data have focused exclusively on

firm-level outcomes (Bessen et al. 2023, Dixon et al. 2021, Koch et al. 2021). A number of

papers with access to firm-level data have studied the impact of automation at one firm on

“competitors” in the same industry and, like us, find negative spillover effects (Acemoglu et

al. 2020, Koch et al. 2021, Aghion et al. 2023c). But few have looked at the overall impact on

industry or area-level employment. An important exception is Aghion et al. (2023b,c), who

use French firm-level data to look at the impact of investments in manufacturing capital

on firm, industry and labour market outcomes, finding positive employment effects at all

levels. Addressing these different levels of analysis within a single empirical setting is critical

for understanding the relationships between firm-level effects, and wider general equilibrium

implications.

Our third contribution is simply to provide the first UK-based study of automation

in the manufacturing sector using firm-level data. Studying different countries is valuable

because, as we discuss in more detail below, the impact of automation depends not simply

on the technology in question, but on the wider labour market context. In other words, we

cannot simply assume that the broad effects of robot adoption on aggregate employment in

(say) the US or Germany will carry over to the UK. As we gather more data points from

different countries and labour markets, we can better understand the contexts in which new

technologies are likely to lead to positive or adverse effects for different groups.

This paper is structured as follows. Section 2 provides background on CNC machines

and industrial robots. Section 3 outlines the task-based conceptual framework that guides

our analysis. Section 4 describes our data and benchmarks it against UK administrative

data. Section 5 outlines our empirical approach, and section 6 outlines our results. Section

7 studies spillover effects. Section 8 concludes.

2 Background: CNC machines and industrial robots

In this section, we provide background on the history of CNC machines and industrial robots,

and their distinctive role in modern manufacturing.

At the most fundamental level, manufacturing is a process by which parts or pieces of

raw materials are cut, drilled, bent and shaped into desired shapes to produce components.

These components are then assembled to produce manufactured goods. Machine tools are

a broad class of machines which fulfil the first step of this process, typically through a
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subtractive process which removes material from the workpiece until the desired shape is

achieved. Their importance for manufacturing is difficult to overstate: they are sometimes

described as the “mother” machine, since, as Holland (1989b, 2) memorably put it, “every

manufactured product is made by a machine tool or by a machine that was made by a

machine tool”.

Prior to the development of machine tools, manufacturing was the domain of skilled arti-

sans who performed the entire range of tasks associated with the production of a final good

from raw material. The late 18th and 19th century saw a paradigm change, as manufacturing

embraced standardisation and specialisation, and production processes were redesigned to

focus on producing large numbers of interchangeable components, which were then assem-

bled into final products (National Research Council 1995). As a result, manufacturing jobs

were increasingly devoted to repeatedly performing the same task. Critical to the adoption

of this system was the availability of special purpose machine tools built specifically for each

task (Jaikumar 2005). 5. These tools were, however, manual in their operation, controlled

fully by their operators.

This started to change with the invention of numerical control (NC) machines in the 1950s

and 1960s, and their widespread adoption throughout the 1970s6. Rapid developments in

computing, including the creation of computer-aided design technologies, led to the birth

of the first true computer numerical control (CNC) machines, displacing the punched cards

used by NC machinery.7 The first CNC tools designed for wide commercial application were

developed in Japan in the late 1960s and their worldwide diffusion accelerated in the 1980s

and 1990s8. Rapid improvements in both microprocessor technology and Computer-Aided

Design (CAD) software in the 1980s transformed the capabilities of these machines and

radically simplified the design process, leading to their widespread diffusion. CNC machine

tools offer increased precision and repeatability, and significantly reduced the set-up times

5Mechanisation yielded massive improvements in productivity, particularly when combined with the man-
agerial and organisational changes that were taking place alongside it. Bright (1958) shows, for example,
that lamps produced per operator per day rose from 160 in the 1910s and 20s, to 800 in the 1920s and 30s,
and to 2,700 by the 1950s.

6In 1966, a report by the US National Commission on Technology, Automation and Economic Progress
heralded the invention of NC machine tools as “probably the most significant development in manufacturing
since the introduction of the moving assembly line” (Lynn et al. 1966)

7The first CNC machine was created at MIT in 1952, as part of a contract with the US Air Force to create
high-precision helicopter parts. Ross (1978) describes the development of the Automatically Programmed
Tool programming language, which was incorporated into a numerical control system in collaboration with
the US Air Force by 1957 and demonstrated publicly in 1959.

8As Boustan et al. (2022) show, CNC machinery was adopted more quickly in some industries than others,
reflecting the differential pace at which the underlying technology was developed for different tool types
and actions, like lathing, drilling and so on.
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needed to adjust and prepare a machine between different tasks.

Industrial robots can perform many of the same tasks as CNC machine tools, such as

drilling, cutting or bending. But their distinctive feature is their spatial flexibility, and their

ability to move and manipulate objects in a variety of ways. Whereas CNC machine tools

are mainly used in the production of parts, industrial robots are typically used for welding,

sorting, painting and a variety of other tasks needed to assemble parts into final products.9

The first industrial robots were created in the 1950s, and their use expanded during the

1960s and 1970s, especially in the automotive sector, but it is only since the 1990s that

they have started to be used across a much wider range of applications including electronics,

food processing, logistics, and precision engineering. As with CNC machines, industrial

robots have benefited from advances in computing, as well as the development of sensors

and machine vision, and recent developments in artificial intelligence continue to transform

their capabilities, allowing increasing precision and flexibility.

What can we take from this brief history for thinking about the impact of the growing use

of CNC machines and industrial robots in modern manufacturing? First, it’s clear that both

CNC machine tools and industrial robots are “automation” technologies, in the sense that

they are designed to replace humans in performing specific tasks. Second, these technologies

typically apply to different parts of the production process, and hence may have different

implications for employment: as Boustan et al. (2022) argues, CNC machines primarily

automate the work of skilled machinists with advanced motor skills, as well as lower skilled

machine setters and set-up operators; while industrial robots tend to automate lower skilled

jobs requiring gross motor skills connected to assembly, welding, packaging processes. Third,

CNC machines are a more mature technology than industrial robots and, as we shall see in

our data, are much more widely diffused across the manufacturing sector. This is relevant for

thinking about learning effects, since there is likely to be a much greater stock of accumulated

experience with CNC machines than for robots.

3 Conceptual Framework

For many years, the dominant approach in the theoretical literature on automation was

the canonical factor-augmenting framework. In this view, technological progress raises the

productivity of a given factor—capital, skilled labour, or unskilled labour—uniformly across

9The International Federation of Robotics defines industrial robots as “automatically controlled, repro-
grammable multipurpose manipulator, programmable in three or more axes, which can be either fixed in
place or fixed to a mobile platform for use in automation applications in an industrial environment”.
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all tasks.10 Within this framework, which dates back to Tinbergen (1974), and was developed

in detail by Katz and Murphy (1992) and Goldin and Katz (2008), new technologies are

generally viewed as benign in their effects on labour markets: they raise productivity, boost

labour demand, and leave the labour share of income broadly unchanged, at least under

realistic values for key parameters.

But as Acemoglu and Restrepo (2022a) argue, this model lacks descriptive realism. Most

technologies do not improve the productivity of a factor across the board. Instead, they tend

to enhance performance in specific tasks while leaving others unchanged—or, in the case

of automation, replacing workers altogether in some tasks. The factor-augmenting model

cannot easily capture this task-specific nature of technological change, nor the displacement

of workers that is central to public and scholarly concerns about automation. Nor does it

align with a growing body of empirical evidence showing that many new technologies have

coincided with declining real wages and employment for exposed workers, as well as a falling

labour share overall.

These limitations have led to the development of the task-based framework, which forms

the theoretical foundation of this study. In this framework, production is understood as a

set of tasks that can be performed by either human labour or capital, depending on their

relative productivity and cost. Automation refers to the reallocation of specific tasks from

human labour to machines. Crucially, this framework allows us to distinguish automation

from two other forms of technological progress: the creation of new tasks (which can boost

demand for labour) and improvements in the productivity of capital at tasks it already

performs (so-called intensive margin progress, which does not directly displace workers).

While all these forms of technological change can raise productivity, only automation—as

defined here—entails a direct displacement of labour.

Automation technologies trigger two competing forces. The first is a displacement effect,

which reduces demand for workers who previously performed the automated tasks. The

second is a productivity effect, which makes production more efficient by lowering costs and

reallocating tasks, potentially enabling firms to expand output. Whether employment rises

or falls depends on the balance of these forces. Importantly, this is not something that theory

alone can determine—it is an empirical question.

The task-based framework also makes clear that the impact of automation can differ

significantly depending on the level of analysis. At the firm level, automation may reduce the

number of workers needed for particular tasks but increase overall productivity. If demand

for the firm’s output is elastic, these productivity gains can lead to firm expansion and

10The following discussion draws on Acemoglu and Restrepo (2022a) and Restrepo (2024).
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net employment growth. While the impact of automation on total company employment

is ambiguous, according to the task-based framework it should lead to a decline in the

employment share of “exposed” occupations whose tasks are directly replaced by machines.

At the industry level, automation can trigger a range of spillover effects that shape em-

ployment dynamics beyond the adopting firm. On the one hand, automation may lead to a

reallocation of output toward more efficient producers, leading to job losses in non-adopting

firms—what the literature refers to as “business stealing”—especially if industry-level de-

mand is inelastic. If these negative spillovers are strong enough, this could lead to a decline

in industry-level employment, even if automation leads to an increase in employment among

focal plants. On the other hand, automation may also generate positive spillovers: by low-

ering prices and expanding overall demand, raising demand for complementary goods and

services, or inducing learning and productivity gains through demonstration effects. At the

regional or labour market level, aggregate employment outcomes reflect not only these firm

and industry dynamics but also a wider set of general equilibrium effects including, among

other things, how easily displaced workers can transition to new jobs.

These insights help clarify the motivation for this study. First, the task-based framework

explains why the impact of automation on employment is theoretically ambiguous and must

be resolved through empirical analysis. Second, it highlights that the effects of automation

can diverge across firms, industries, and regions, making it essential to track these dynam-

ics at multiple levels of aggregation. And third, it underlines the importance of focusing

on specific technologies and distinguishing automation from other forms of technological

change. A key advantage of our study is that we are able to track the adoption of two of the

most important automation technologies of recent decades. Moreover, we directly observe

“adoption” events—the first time a firm introduces a given technology—which provides a

clean empirical analogue to the concept of automation at the extensive margin, as opposed

to other forms of technological investment.

While the task-based framework offers a powerful conceptual tool for thinking about

how automation reshapes the allocation of tasks between labour and capital, it typically

abstracts from the dynamic processes through which firms adjust to new technologies.11 In

particular, it overlooks the fact that adopting and integrating automation may itself be a

gradual process, involving costly experimentation, reorganization, and learning. Learning-

based models, such as those developed by Atkeson and Kehoe (2007), emphasize that initial

adoption is only the first step in a lengthy “learning-by-doing” process, during which firms

11While the learning dynamics discussed below are not modelled explicitly in the canonical task-based
framework, they are not incompatible with it.

9



accumulate the complementary human and organizational capital needed to fully exploit a

new technology. As a result, the benefits of automation may unfold gradually, with later

investments yielding larger effects on productivity and employment than initial adoption.12

As we will argue in Section 6, this provides a compelling account of why “expansion” events

– when companies increase their use of CNC machines from an already positive baseline –

may yield stronger effects than first-time adoption.

4 Data: The MAG Manufacturing Survey

A central challenge in automation research has been gaining access to firm-level data on

technology adoption. In this paper, we have access to such data through the Mark Allen

Group (MAG) Manufacturing Survey, a private census of UK manufacturing plants that

has been updated continuously for over 30 years, and which we have access to from 2003

to 2023.13 MAG is a media and information company that, among other things, publishes

more than one hundred industry-focused publications across a wide range of sectors. It

sells access to its manufacturing survey to clients who use it to target advertising and for

sales prospecting by post, phone, and email. This exerts a strong market discipline on data

quality, since clients rely on the accuracy of the information for commercial targeting, and

errors would quickly be discovered, undermining MAG’s reputation.

The MAG survey is conducted through a series of telephone interviews, and seeks to

provide a comprehensive picture of manufacturing sites in the UK. As we can see in Figure

1, the MAG data largely mirrors the aggregate decline in total manufacturing employment

that is observed in official national statistics over the past twenty years. Table A1 shows

that the MAG survey captures around 80% of total annual manufacturing employment on

average from 2005 to 2023, with a sharp decline in coverage during the Covid-19 pandemic;

while Table A2 shows that most of the gap in coverage comes from missing plants with

fewer than 10 employees. Although the raw MAG data is not perfectly representative of

the national manufacturing sector, this is not a serious issue since our analysis is focused on

within-plant changes in technology and employment.

12As Atkeson and Kehoe (2007) show, learning-based models can help explain key facts about previous
periods of rapid technological change, including the long lag between technological innovations and im-
provements in productivity, the slow diffusion of new technologies, and continued investment even in
mature technologies, such as CNC machines. In their calibrated models internal innovations among ex-
isting users can exceed those at the technology frontier. For a discussion of similar ideas in relation to
artificial intelligence see Brynjolfsson et al. (2019).

13The survey was created and run by Findlay Media Limited until 2014 when it was acquired by Mark Allen
Data Services (MADS), a subsidiary of the Mark Allen Group. For further information about MAG, see
https://www.markallengroup.com/
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Figure 1: Employment trends in MAG vs ONS
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Notes: this table compares total employment (in ’000s) in the MAG survey with official data from the

quarterly Labour Force Survey, produced by the Office for National Statistics. As per Table A1, the MAG

survey captures 80% of total ONS manufacturing employment on average.

For each surveyed site, the data includes the company name (note that companies can

include multiple establishments), whether the company is part of a group, the postcode

within which the site is located, detailed industry codes, the total number of employees at a

given site, and the number of employees in four key sub-groups: manufacturing production,

factory services, engineering design and electronic design. The survey also includes the self-

described “primary product” manufactured at the site, as well as information about key

supplier relationships, including whether a plant makes its own products and/or performs

subcontract work for others, and whether they supply the aerospace, automotive or defence

sectors.

The unique feature of this dataset is that it contains rich plant-level information about

the use of key technologies. Of particular interest is data on the number of machine tools,

broken down into Computer Numerical Controlled (CNC) versus non-CNC machine tools;

and a binary variable recording whether a plant makes use of industrial robots.14 MAG

14MAG also collect more detailed information about these technologies, which we do not currently have
access to. For example, they gather data about the number of CNC and non-CNC tools used for cutting
vs forming, as well as a breakdown of whether a plant uses machine tools for various specific activities
including drilling, grinding, milling, bending and/or pressing. They also collect a more detailed breakdown
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has collected data about CNC machine tools since 2003, while data on industrial robots was

added in 2012. However, we only use data on technology use from 2005 and 2014 respectively,

since most sites are interviewed at least once every three years, allowing us to construct a

reasonably accurate baseline of machine use.15 In the subsequent analysis we limit our

sample to manufacturing production sites, defined as sites that use some kind of mechanical

tool. Dropping sites that never report positive tool usage in any period reduces our sample

by about 40%. These non-tool using sites are likely to represent a combination of corporate

offices, sales rooms, wholesalers and intermediary firms that are connected to manufacturing

and hence of interest to MAG’s customers, but not relevant to our analysis.16 We also impute

missing values of key employment and tool use variables using a carry-forward imputation.

4.1 Levels and trends in CNC and industrial robot use

Table 1 provides some descriptive statistics about our dataset, focusing on the manufacturing

production sites that are the focus of the subsequent analysis. Our data contains 368,914

site-year observations, covering 26,974 unique sites. Of these sites, just under half use CNC

machine tools at some point, while just over 6% use industrial robots. Consistent with

the wider literature, we find that plants that use these advanced technologies have more

employees than those that do not, though the difference is much larger for industrial robots

than for CNC machines: plants that have at least one CNC machine employ 79 people on

average, compared to 76 across all plants; whereas plants with robots have 234 employees

on average.

of industrial robots into four categories: Automated Handling or Storage Systems; Assembly/Welding
Robots; Painting/Finishing Robots; Collaborated Robots. In recent years, they have started collecting
data about the use of 3D Printing Machines and Plastics Machines.

15When a new question is introduced, every site is recorded as either having 0 or a positive number of tools.
As a result, we cannot directly distinguish plants that have no tools from those that have not yet been
sampled since the question was introduced. Since most plants are sampled at least every three years, we
only use technology data from the third year after a question has been introduced.

16In practice, whether or not we include these sites does not make a significant difference to our results.
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Table 1: Descriptive Statistics of UK Manufacturing Plant Survey

Selected Years All Years by Technology Use

Variable 2005 2014 2023 All CNC Users Robot Users

Sample Size

Number of Observations 20,087 17,923 13,133 368,914 229,697 38,079

Number of Sites 20,087 17,923 13,133 26,974 15,341 1,996

Number of Firms 19,549 17,516 12,934 26,180 14,970 1,947

Employment

Mean 81.1 69.9 76.9 75.7 79 236.7

Total 1,629,658 1,253,437 1,010,213 27,913,290 18,147,636 9,013,907

p5 2 2 3 2 3 6

p25 7 7 8 7 8 30

Median 20 20 20 20 20 82

p75 60 50 55 55 55 230

p95 330 269 300 300 300 828

Technology Use

Employment with CNC (%) 52 54.7 60.4 54 83 66.4

Employment with Robots (%) - 14 27.1 22.8 26.5 63.1

Plants with CNC (%) 46.6 50.3 55.9 49.3 79.1 61

Plants with Robots (%) - 3.9 8.3 6.2 7.2 51.4

Total Machine Tools 348,574 254,847 189,055 5,683,642 4,773,935 1,138,851

Total CNC Machine Tools 83,684 80,976 69,525 1,652,840 1,652,840 424,355

Tools per Worker 0.2 0.2 0.2 0.2 0.3 0.1

CNC Tools per Worker 0.1 0.1 0.1 0.1 0.1 0

Notes: This table presents summary statistics for ‘manufacturing production’ plants in the MAG survey, as defined in
the text. Reliable information about robot use is only available from 2015. ‘CNC Users’ are sites that have ever used
CNC machines, ‘Robot Users’ are sites that have ever used robots.
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Although CNC machine tools were already a relatively mature technology by the early

2000s when our data begins, the past 20 years have seen a continued increase across indus-

tries. Figure 2a shows that the share of manufacturing production plants using at least one

CNC machine increased from about 47% in 2005 to nearly 56% in 2023, while the share of

employees who work in such establishments increased from about 52% to 60%. The share of

plants using industrial robots has increased from barely 4% in 2014 to 8% in 2023, while the

share of employees working in plants that use industrial robots jumped from around 14% to

more than 27% over the same period.

As we can see in Figure 3, these technologies are used more heavily in some parts of

manufacturing than others. CNC machines are most prevalent in metal-heavy sectors like

mechanical engineering, motor vehicles and metal manufacturing, where a clear majority

of workers are employed in plants with at least one CNC machine. Industrial robots are

heavily used in many of the same metal-heavy sectors, but also in other sectors where CNC

machines play little role. In the “food, drink and tobacco” sector, for example, almost 43%

of employees work at sites with industrial robots, compared to just 2.5% for CNC machine

tools. These differences likely reflect the different capabilities of these technologies: while

CNC machines are designed to cut and shape metal, industrial robots have a much wider

range of possible applications. As we can see in Figure 4, most manufacturing sectors have

seen an increase in the use of both technologies during this period, albeit at different rates.

Our empirical strategy, which we discuss in the following section, takes advantage of

the growing diffusion of these technologies over the past twenty years. Variation in the

pace of technology adoption across industries highlights the importance of controlling for

industry-level employment trends that might otherwise confound our estimates.
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Figure 2: Automation Technology Diffusion in UK Manufacturing

(a) CNC Machine Tools, 2004-2023
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Notes: “Plant Share” is the share of plants with at least one CNC machine or industrial robot, based on

the MAG survey. “Employment Share” is the share of employees at such plants. The sample is limited to

“manufacturing production” plants in the MAG survey, as defined in the text. Reliable information about

robot use is only available from 2015.
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Figure 3: Share of Workers at Plants with Automation Technology in 2023, by Industry

(a) CNC Machine Tools
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Figure 4: Annualized Change in Share of Workers at Plants with Automation Technology,

by Industry

(a) CNC Machine Tools (2006-2023)
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5 Empirical Approach

In this section we describe our empirical strategy for estimating the impact of the growing

use of CNC machines and industrial robots on plant-level employment. We exploit the

rich panel structure of our dataset using an event-study design, comparing the evolution

of employment at focal plants after an “automation event” with a control group of non-

automating sites. We do this using the Local Projection Difference-in-Differences (LP-DiD)

estimator proposed by Dube et al. (2023), which addresses some of the well-known issues

with standard two way fixed effects estimators in settings like ours with staggered treatment

timing and heterogeneous treatment effects.

5.1 Automation Events

We study the effect of two distinct types of automation event: adoption events, which

occur when a firm acquires a given technology for the first time, and expansion events,

which occur when a firm increases its stock of that technology having already adopted it in

an earlier year.

Formally, we define an adoption event using a binary treatment variable Dadopt
i,t,A ∈ {0, 1},

which switches from 0 to 1 in the first year that plant i uses automation technology A ∈
{CNC Machines, Industrial Robots}:

Dadopt
i,t,A =

1 if technology A is used at any date s ≤ t

0 otherwise

An adoption event is then defined as the first difference of this variable, ∆Dadopt
i,t,A , indicating

the year a plant moves from non-use to use of the technology. As is standard, we model

treatment status as absorbing: once adopted, Dadopt
i,t,A remains 1 in all subsequent periods.

We define expansion events similarly, using a binary variable Dexpand
i,t,A ∈ {0, 1}, which

switches from 0 to 1 in the first year that a plant increases its number of CNC machines,

having already adopted the technology in an earlier year:

Dexpand
i,t,A =

1 if Techi,s,A > Techi,s−1,A > 0 for any s ≤ t

0 otherwise

As with adoption events, we model the expansion indicator as absorbing. Since we observe

machine counts only for CNC technologies, we are not able to define expansion events for
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industrial robots.

Adoption and expansion events capture distinct margins of technological change, both

of which are central to understanding the labour market effects of automation. Adoption

events provide a clean empirical analogue to automation as defined in the task-based frame-

work discussed in Section 3, which conceptualizes automation as a reallocation of tasks from

labour to capital. Our definition of adoption—capturing the first time a plant uses a given

automation technology—corresponds closely to this notion of a discrete qualitative shift in

the allocation of tasks from humans to machines. By contrast, expansion events may re-

flect either further automation at the extensive margin i.e. the replacement of humans in

additional tasks, or intensive margin investments i.e. the scaling up of already automated

tasks. While this limits their usefulness for identifying canonical automation effects, expan-

sion events are of independent interest because they provide an opportunity to investigate

so-called learning effects, as discussed in Section 3.

Our dataset includes a substantial number of both types of events. As shown in Table

A3, we observe 4,355 CNC adoption events, 1,826 robot adoption events and 8,240 CNC

expansion events.

5.2 The Local Projection Difference-in-Differences estimator

Since different plants experience automation events at different points in time, our setting is

characterized by staggered treatment timing. Moreover, treatment effects are likely to vary

with the number of periods since a treatment event (the “horizon”) as plants adjust their

production processes, organizational behaviour and employment. We also expect hetero-

geneity in treatment effects across plants even over the same horizon, reflecting unobserved

time-varying factors such as the quality of managerial practices and introduction of new

products by downstream or upstream producers.

There is now a large literature on the challenges of estimating event-studies in such a

context, and in particular the problems associated with the standard Two Way Fixed Effects

(TWFE) framework. These estimators can produce misleading results because they include

all available non-treated units in the control group, meaning previously treated units whose

outcomes may still be affected by prior treatment are included as controls for currently

treated ones. If the effect of treatment grows or shrinks over time, this can distort the

comparisons. For example, treated units might appear to do worse than the control group

simply because the ‘controls’ are already benefiting from the treatment. These ‘forbidden

comparisons’ can lead not just to biased estimates, but to ones that have the wrong sign
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entirely.17

While several estimators have been proposed to address these issues, we use the Local

Projection Difference-in-Differences (LP-DiD) estimator developed by Dube et al. (2023).

As the name suggests, this estimator uses the local projection approach to estimating dy-

namic treatment effects, which relies on estimating separate regressions for each time horizon

relative to treatment. At the same time, it modifies this approach to avoid forbidden com-

parisons, requiring that the units included in the control group are either never-treated units

or have been treated sufficiently far in the past that their current outcomes are no longer

influenced by the treatment. LP-DiD has a number of advantages compared to other similar

estimators: it is computationally efficient and fast to implement; its identification assump-

tions are transparent and easy to understand; and it is highly flexible, making it easy to

vary weighting schemes, choose alternative pre-treatment base periods, and pool treatment

effects across different horizons. As Dube et al. (2023) emphasize, many other recent DiD

estimators can be replicated as special cases of LP-DiD by adjusting these parameters.

Our preferred specification involves estimating the following regression:

yi,s,t+h − yi,s,t−4:t−1 = βh∆Di,t,A + θs,t + γ∆yi,s,t−1 + ehi,s,t, ∀h ∈ {−4,−3, . . . , 4} (1)

while restricting the sample to observations that are either:{
newly treated ∆Dit = 1,

clean control i.e. not yet treated at t+ h Di,t+h = 0

In the above, yi,s,t+h is total employment for plant i in industry s, h years after the treatment

period t, and yi,s,t−4:t−1 is the average outcome over the pre-treatment periods t − 4 to

t− 1. ∆Di,t,A captures a generic automation “event”, defined as a change in the underlying

treatment indicator from t − 1 to t (as above, where needed, we distinguish adoption and

expansion events more explicitly asDadopt
i,t,A andDexpand

i,t,A ). Our coefficient of interest is βh which

measures the treatment effect h periods after the treatment, and we study a time horizon

from four years prior to four years after a given event. Although we estimate a variety of

specifications to test the robustness of our results, in our main specification we include year-

by-industry fixed effects θs,t as well as a lag of the differenced outcome variable ∆yi,s,t−1. As

discussed below, these help mitigate a number of possible threats to identification, and to

strengthen the plausibility of giving a causal interpretation to our results.

17For a detailed discussion of these issues and potential solutions see de Chaisemartin and D’Haultfœuille
(2024, 2022), Roth et al. (2023). A variety of alternative estimators that do not suffer from these difficulties
have been proposed, and in Section 6 we show that our core results are robust to four key alternatives.
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With these controls in place, we can interpret our βh coefficients as the estimated dif-

ference in outcomes between plants that experience an automation event and those that do

not, relative to pre-treatment trends and other plants in the same year and industry.

5.3 Identification

As with all difference-in-differences estimators, there are two critical identification assump-

tions

1. Conditional parallel trends: Absent treatment, outcomes for treated and control

units would have followed similar trends, conditional on covariates.

2. Conditional no anticipation: Units do not change their employment behaviour in

anticipation of treatment.

Under these assumptions, the βh coefficient from equation (??) consistently estimates a

weighted average across all treated cohorts of the Average Treatment Effect on the Treated h

periods after an automation event. If these conditions hold, we would expect our estimated

pre-treatment coefficients to be flat and close to zero. While this is not a sufficient condition

for identification, it provides a useful first check on the plausibility of the assumptions.

There are several possible threats to identification, which we seek to mitigate. The

fundamental concern is that companies which adopt new technologies might, for a variety of

reasons, already be on a faster growth trajectory, thus invalidating the key parallel trends

assumption.18

It is possible, for example, that companies which adopt CNCmachines or industrial robots

are disproportionately concentrated in industries that are on more rapid growth trajectories.

We include a full set of industry-year fixed effects in our main specification to account not just

for secular industry-level trends that may be correlated with technology adoption, but for

time-varying industry-level shocks, like a sudden spike in global demand for cars, that might

simultaneously raise the probability of technology adoption and affect plant employment.

Even within a given industry, technology adopters might differ in unobserved ways that

also affect their employment trajectory. They might, for example, have more capable or

better informed managers who are simultaneously more likely to invest in new technology

and pursue a range of other strategies that drive faster employment growth. Alternatively,

18See, for example, Acemoglu et al. (2023), who find that US companies that adopt new technologies including
AI and robotics were already larger and growing faster than other similar companies that did not; and
Bessen et al. (2023), who documents that Dutch companies that experience an automation event have a
higher average growth rate than those which do not.
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firms in faster growing market segments may be more likely to both expand their employment

and adopt new technologies, simply to keep up with rising demand. These concerns help to

motivate our inclusion of a lag of the differenced outcome variable, which allows us to account

for firm-level differences in pre-treatment trajectories that might otherwise bias our results

(we effectively partial out these dynamics to better isolate the causal effect of treatment).

Dube et al. (2023) recommend this approach in contexts like ours where the outcome variable

is likely to be subject to momentum or drift, following a well-established tradition in panel

data models.

As we shall see, conditional on these controls, we find that treated and control units

exhibit broadly parallel pre-treatment trends. But even if pre-trends appear similar, bias

may still arise if treatment coincides with unobserved shocks. For instance, it is possible

that a spike in demand leads companies to immediately install new machines; or that new

managers arrive in a plant and instantly install new technologies, while also overhauling other

workplace practices that affect employment levels. However, such contemporaneous shocks

are unlikely to explain our results, because decisions to install CNC machines and industrial

robots typically involve substantial planning, capital investment approval processes, and

installation lead times that can span multiple quarters or even years.19

While our discussion so far has focused on threats to the parallel trends assumption, we

also consider the possibility of bias arising from anticipatory adjustments to employment

prior to treatment. As we have just commented, automation events are likely to be the

result of planning over multiple years, which raises the possibility that plants might hire

new or different kinds of workers in anticipation of the arrival of new technologies, leading

to biased results. Such anticipation effects would also be mitigated by including a lag of the

differenced outcome variable, and even without including this lag, we do not find evidence

of significant anticipation effects.

In the absence of a valid instrument or other (quasi-)experimental estimation strategy, we

cannot justify a strictly causal interpretation of our results, and identifying such a strategy

is an important priority for future research. Even so, it is worth noting that Aghion et al.

(2023c, 19-20), who combine an event-study design similar to our own with a shift-share

IV strategy leveraging pre-determined supply linkages and productivity shocks, find that

OLS-based estimates remain positive but of smaller magnitude. In other words, their results

19The high cost of the organizational changes required to implement a successful adoption of ICT are
emphasized in Brynjolfsson and Hitt (2000); we expect that the changes required to implement a new
machine tooling system are similar. For industrial robots, Humlum (2021) estimates that the total cost
(equipment and non-equipment) of robot adoption for the typical firm can be up to 25% of the firm’s sales,
with the equipment component estimated at around 13%.
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suggest that if anything, a strategy such as ours might under-estimate the positive effects of

automation at the firm level. In any case, while we cannot rule out all sources of endogeneity,

the absence of differential pre-trends in most specifications, the careful use of industry-time

controls, and the inclusion of firm-level dynamics should all help to strengthen the plausibility

of a causal interpretation.

6 Firm-level results

Figure 5 presents our event-study estimates of plant-level employment around automation

events. For CNC adoption, treated plants experience an immediate 5% increase in total

employment relative to controls, growing modestly to around 6% four years after adoption.

Industrial robot adopters show a similar pattern: a 5% jump in employment in the year of

treatment that rises to roughly 8% after four years. In other words, for both technologies,

firm-level productivity effects appear to dominate displacement effects, leading to a positive

overall impact on employment. Importantly, our event studies support the two critical

identification assumptions: treated and control firms exhibit broadly parallel pre-treatment

trends, conditional on our industry and lagged dependent variable controls; and there is no

evidence of significant anticipation effects.

Figure 5 also displays the results for CNC expansion events, which occur when a plant in-

creases the total number of CNC machines from an already positive number. Although there

is modest evidence of a positive pre-treatment trend, CNC expansion events are associated

with an even larger increase in total plant employment of about 6% in the year following an

expansion event, rising to 9% after four years. In contrast to adoption events, the increase

in employment following an expansion event does not plateau after four years, indicating

that such events may not only increase the level of employment, relative to controls, but also

shift firms onto a different growth trend.
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Figure 5: Plant-level Event Study, Total Employment

(a) CNC Machine Adoption
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Notes: These figures show LP-DiD estimates of employment effects following automation events, as defined

in the text. Panel (a) uses N = 368, 914 observations from 2005-2023, with 4,355 adoption events and 8,240

expansion events. The post-treatment pooled coefficient is 5.058∗∗∗ (adoption) and 6.821∗∗∗ (expansion).

Panel (b) examines industrial robot adoption using N = 229, 731 observations from 2010-2023, of which

1, 826 experienced an adoption event. The post-treatment pooled coefficient is 6.98∗∗∗. Both designs use

6-digit Industry Codes × Year fixed effects and a lag of the differenced outcome variable in period t− 1 as

controls, as per equation 1, with standard errors clustered at the plant-level. Vertical bars represent 95%

confidence intervals.
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Although the positive difference between expansion and adoption events is modest, it is

consistent with the idea that plants undergo a learning process after adopting new technolo-

gies Atkeson and Kehoe (2007). As discussed in Section 3, in learning-based models it takes

time for firms to accumulate the human, organizational, and process-specific capital needed

to make the most of a given technology, and to undertake the complex work of re-shaping

production processes and cultivating new supplier and customer relationships. Once a plant

has climbed the steepest section of this learning curve, further investments — such as adding

more CNC machines — may deliver disproportionately larger returns, since the firm already

knows how to integrate new capacity into its routines and can redeploy it immediately into

higher-value tasks.

6.1 Alternative specifications and robustness

Figure 6 compares our baseline technology adoption results from the previous section to

four alternative specifications of the LP-DiD estimator. As explained in Section 5, our pri-

mary concern is to control for employment-related factors that are correlated with treatment

(technology adoption), and hence satisfy the conditional parallel trends assumption.

To recap, our baseline specification includes year by industry fixed effects, as well as a

lag of the differenced outcome variable. The latter mechanically flattens the estimated pre-

treatment coefficients in t− 1 and t− 2. To see how these controls affect our results we look

first at the simplest reasonable specification with year fixed effects only (in green). In contrast

to our baseline, we find that treated units have a slightly positive pre-treatment employment

trend; and that this pre-trend is more pronounced for sites that adopt CNC machines than

industrial robots. Nevertheless, we continue to observe a clear jump in employment compared

to untreated units in the year of treatment, followed by a gradual further increase over the

subsequent four years.

In our third specification (in purple) we add a full set of year by four-digit industry

controls, to allow for the possibility that technology adoption is correlated with broader

industry-level employment trends, but once again omit the lag of the differenced outcome

variable. Compared to our specification with year fixed effects only, this further reduces the

observed pre-treatment trends for CNC adopters (though not for robots), suggesting that

treated units are slightly more likely to be in faster-growing industries; and for both CNC

and robots we continue to observe a substantial and sustained jump in employment after

treatment, compared to untreated units. In order to demonstrate that our results are not

being driven by the lag of the differenced outcome variable, in Table A6 we report the four

year pooled post-treatment coefficient with no lag and with one, two and three lags. Varying
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the number of lags makes little difference to our results.

Our fourth specification (in blue) adopts a slightly different approach: instead of using

the lag of the differenced outcome variable to control for differential trends immediately prior

to treatment, we control for linear plant-specific time trends in employment across the whole

span of our data.20 In this specification, the modified parallel trends assumption is that,

after removing site-specific trends, treated and control units would have been parallel in

deviations from those trends; and we can interpret the estimated LP-DiD coefficients as the

average effect of treatment relative to each plant’s own linear employment trend. In practice,

pre-treatment coefficients in this model are largely flat and close to zero; while the estimated

treatment effects continue to be significant, albeit slightly smaller in magnitude than in our

baseline model, and (thanks to the addition of many extra parameters) less precise.

Finally, we include a specification (in red) that repeats our baseline specification, but

restricts the control group to “future adopters”, in other words plants that eventually ex-

perience an adoption event for the technology in question. We do this by dropping “never-

treated” units from our sample. This approach is inspired by Bessen et al. (2023), who argues

that sites which adopt advanced technologies are likely to differ in unobserved ways from

sites that never adopt. They may, for example, have better informed management, or be in

faster growing sectors. By comparing adopters with future adopters, rather than with never

adopters, this specification exploits the timing rather than the incidence of adoption events,

and is more likely to compare like with like. The downside is that the size of control group

is significantly reduced. Again, this specification supports our headline findings: we find

no evidence of differential pre-treatment trends between current and future adopters; and

we find that automation events are associated with a statistically significant and sustained

increase in employment, albeit slightly lower than in our baseline.

20This is accomplished by explicitly adding a unit fixed effect to the standard LP-DiD specification. As the
authors of the relevant command explain, since unit fixed effects are already filtered out by the differencing
of the outcome in LP-DiD, “adding unit fixed effects to the LP-DiD specification is equivalent to including
unit-specific linear time trends”. See http://fmwww.bc.edu/repec/bocode/l/lpdid.sthlp
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Figure 6: Alternative Plant-level Event Study Specifications
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only; 4. includes Industry by Year fixed effects plus a linear site-specific trend; and 5. runs the baseline

specification on the subsample of units who experience an adoption event at some stage i.e. it removes

never-treated units from the control group, leaving only ’future treated’ ones.
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Figure 7: Placebo Test of Baseline Event-study Results
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is depicted as normally distributed in blue shading. Additionally, the left-most distribution in both panels

shows a kernel-density plot of the same coefficient estimate from N = 50 placebo trials, where technology

adoption events are randomised across the complete sample, preserving the temporal distribution throughout.

The mean/median of the placebo-treatment coefficient estimates in panel (a) are 0.04/0.03 and in panel (b)

are −0.28/0.43.
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In addition to these alternative specifications, we conduct a placebo test using our baseline

specification. Specifically, we conduct fifty separate trials in which we randomly assign

technology adoption events across the complete sample, preserving the temporal distribution

of events throughout. In contrast to the alternative specifications above — which test the

robustness of the conditional parallel-trends assumption by varying our controls — this

exercise performs a simple randomization-inference check: the aim is to confirm that our

results capture a genuine treatment effect rather than a mechanical artifact of the LP-DiD

estimator or a chance fluctuation in the data. We report our results in Figure 7. On the

right is the estimated impact of technology adoption after four years, as reported in Figure 5,

where the standard error is depicted as normally distributed in blue shading. On the left (in

green shading), we report the distribution of the four-year post-treatment coefficient across

our fifty placebo trials. Our results are reassuring: for both CNC machines and robots,

the distribution of placebo coefficients is centred around zero, and barely overlaps with the

estimates from our baseline specification.

To complete our robustness tests, in Table A4 we show the pooled post-treatment co-

efficient obtained from estimating our core specification using four alternative estimators

put forward in the recent literature on difference-in-difference estimation in the context of

staggered treatments and heterogeneous treatment effects. While different estimators yield

slightly different point estimates, the results are remarkably similar across these specifica-

tions. Finally in A5 we show that the significance of our core results is also robust to a range

of alternative clustering strategies.

6.2 Employment-mix following Installation of Automation Tech-

nology

One of the key predictions of the task-based framework is that automation will reduce

the share of employment among workers whose tasks are displaced. Our data single out

employment of “manufacturing workers”, who are most likely to be exposed to automation

as a result of the installation of CNC machines and industrial robots.

In Figure 8 we report the results of our baseline LP-DiD specification, but replacing the

outcome variable with the share of manufacturing employees at a given site. Our results

looking at adoption events do not support the prediction of the task model. For CNC

machines, there is no discernible effect of automation events on the share of manufacturing

employees. For industrial robots there is some evidence of a slight decline, but this follows a

significant negative pre-trend, and in any case the individual post-treatment coefficients are

29



not significantly different from zero at the 5% level.

However, we find that CNC expansion events are associated with a large and statistically

significant reduction in the share of manufacturing workers of around 8 percentage points

after six years. This is further suggestive evidence that the distinction between adoption and

expansion events is economically significant. These results are also consistent with the idea

that plants which adopt new technologies undergo a learning process. On this view, it takes

time for firms to work out how to reorganise their production processes in ways that make

the most of a given new technology. If this is the case, we would expect first adopters to use

technologies in ways that are more easily adapted to existing work processes, and more likely

to complement existing workers. However, as firms accumulate more know-how about a new

technology, they are likely to see opportunities to redesign processes in more fundamental

ways that might automate away existing tasks. Investigating this mechanism further, both

theoretically and empirically, is an important question we leave for future research.
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Figure 8: Plant-level Event Study, Share of Manufacturing Em-

ployment

(a) CNC Machine Adoption
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(b) Industrial Robot Adoption
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Obs: 193041 | Units: 19903 | Treated: 1826 | Controls: 410 | Year Range: 2012−2023
FEs: SICxYear | Clustering: SiteID | Lags: 1 Dy lag

Post−period pooled coefficient: −0.611 | p−value: 0.203Note: These figures show LP-DiD estimates of employment-composition effects following automation events,
as defined in the text. The outcome variable is the share of manufacturing workers to higher skilled design-
ers/engineers. Panel (a) uses N = 368, 914 observations from 2005-2023, with 4,355 ’adoption’ events and
8,240 expansion events. The post-treatment pooled coefficient is 1.541∗ (adoption) and −5.854∗∗∗ (expan-
sion). Panel (b) examines industrial robot adoption using N = 229, 731 observations from 2010-2023, of
which 1, 826 experienced an adoption event. The post-treatment pooled coefficient is −0.611. Both designs
use 6-digit Industry Codes × Year fixed effects and a lag of the differenced outcome variable in period t− 1
as controls, as per equation 1, with standard errors clustered at the plant-level. Vertical bars represent 95%
confidence intervals.
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7 Industry-level results

As we saw in our discussion of the task-based framework in Section 3, even if automation

events are associated with an increase in employment at focal plants, this need not translate

into an increase in industry-level employment. This depends on how automation at focal

plants also affects the employment of their competitors. On the one hand, it’s possible

that as automating firms become more productive, we see a reallocation of production away

from less productive firms. A number of empirical papers have documented evidence of

such “business stealing” effects, where automating companies expand at the expense of their

competitors (Aghion et al. 2023c, Acemoglu et al. 2020, Koch et al. 2021). If this is the case,

the eventual impact at the industry level will still depend on whether the expansion among

automating firms outweighs the contraction of their competitors. While both Acemoglu et

al. (2020) and Aghion et al. (2023c) find evidence of business stealing, they find opposite

overall effects on industry employment. On the other hand, automation can also lead to

positive spillover effects on competitor firms. If demand is elastic, lower prices as a result

of automation may expand total output in the industry, for example, especially if capacity

constraints or market frictions limit the dominance of automating companies. In addition,

automation may increase demand for complementary inputs or services, some of which may

be supplied by other firms in the same sector, or trigger broader productivity improvements

through demonstration and diffusion effects.

In this section, we first test for evidence of business stealing, before looking directly at

the impact of automation on industry level employment.

7.1 Impact on competitor plants

In order to look at whether automating firms steal business from their competitors, we first

need to define who those competitors are. The best proxy for this in our data is whether

two sites share a given industry code, which is a reasonably strong indicator that they are

producing similar products and competing in the same market segments. We then follow the

strategy proposed by Aghion et al. (2023c), who replace each firm’s own employment outcome

in their event study specification with the employment of its competitors. Specifically, we

adapt our firm-level LP-DiD specification by replacing the outcome variable for each plant-

year observation with the total employment among other firms in the same six-digit SIC

code:

32



Y −i
i,t,s =

∑
j ̸=i
sj=s

yj,t (2)

This specification captures how the employment of a treated firm’s competitors evolves in

response to automation events. Specifically, the estimated LP-DiD coefficients compare the

change in competitors’ employment for treated firms h years after treatment to the change

in competitors employment’ for untreated firms over other h-year periods in our dataset. If

there is business stealing, we would expect competitors’ employment to decline in the periods

following a treatment event compared to the trajectory at untreated firms over similar time

horizons. Conversely, if there are positive spillover effects, we would expect automation at

one firm to lead to an increase in employment among its peers, relative to other firms and

periods.

As we can see in Figure 9, we find evidence of positive spillover effects rather than business

stealing. For CNC machines, automation at a focal plant is associated with a statistically

significant increase in competitors’ employment of around 3% after four years. This is true

for both adoption and expansion events. The direction of travel appears to be the same for

competitors of plants that adopt industrial robots, though the magnitude of the effect is

smaller and not statistically significantly different.

A natural concern with these results is that they are simply capturing positive industry-

level trends that are common to treated companies and their competitors in a given industry.

So, for example, we might worry that companies that automate are more likely to be in faster

growing industries, and that as a result employment among their peers is likely to grow faster

than that of peers in other industries. We mitigate this concern directly by continuing to

include industry and year fixed effects, and a lag of the differenced outcome variable. More

importantly, if this was driving our results, it would show up in a positive pre-treatment

trend among treated units, something we do not observe.21

21Another potential concern is that the outcome variable for untreated units in this specification, namely
total employment among all other firms in their industry, will include the employment of treated units
in that industry. Since treated firms generally see a (relative) increase in employment after automation
events, this will mechanically increase employment among their peer group. If anything, however, this
would lead us to understate positive spillovers, since it would mechanically increase the outcome variable
for untreated units when one of their peers is treated. To examine this concern we have also looked at
specifications using total employment among never treated peer companies in the same industry, and find
qualitatively similar results.
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Figure 9: Spillover Effects of Automation Events on Industry-

Competitor Employment

(a) CNC Machine Adoption
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Post−period pooled coefficient: 0.636 | p−value: 0.287Notes: These figures show LP-DiD estimates of the effect of focal plant automation events on industry-

competitor employment, as described in the text. The outcome is the leave-out sum of employment among

other sites in a given industry and year, defined in Equation 2. Panel (a) uses N = 368, 914 observations from

2005-2023, with 4,355 adoption events and 8,240 expansion events. The post-treatment pooled coefficient

is 3.315∗∗∗ (adoption) and 2.416∗∗∗ (expansion). Panel (b) examines industrial robot adoption using N =

229, 731 observations from 2010-2023, of which 1, 826 experienced an adoption event. The post-treatment

pooled coefficient is 0.636. Both designs use 6-digit Industry Codes × Year fixed effects and a lag of the

differenced outcome variable, as per equation 1, with standard errors clustered at the plant-level. Vertical

bars represent 95% confidence intervals.
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7.2 Industry-level automation events

We now turn to look more directly at the implications of automation for industry employ-

ment, taking into account both the impact on focal firms and on their competitors. Following

Aghion et al. (2023c), we adapt our LP-DiD design once again, but this time embracing a

fully industry-level specification: studying the impact of industry-level automation events

on total industry employment. Intuitively, we study what happens in an industry after a

significant increase in the penetration of a given automation technology, taking into account

the full set of direct, indirect and general equilibrium effects.

We define an industry-level automation event as a year in which we see a large increase

in the share of employees working for companies that use a given technology, relative to all

positive annual increases in this measure. Specifically, we first measure all positive annual

changes in the share of employees working at plants using a given technology in each industry,

and then define an industry automation event as an increase in this share above a given

percentile threshold in the distribution of all positive year-on-year changes.22 Focusing on

the share of employees working at firms that use a given technology, rather than simply the

share of companies using that technology, means the influence of a given firm’s adoption is

weighted by its size. For example, an automation investment at a large multi-site employer

will have a much larger effect on industry employment dynamics than adoption by a small

fringe firm. Unlike at the firm-level, where adoption and expansion provide natural binary

thresholds for defining events, the definition of an automation event at the industry level

using thresholds is inherently somewhat arbitrary. As such, we display our results for three

thresholds: the top half, the top third, and the top quartile of positive year-on-year changes

in the share of employees working at companies that use a given technology.

To examine the impact of automation on industry-level employment, we adapt our firm-

level LP-DiD specification to the industry level. Specifically, we estimate:

ys,t+h − ys,t−4:t−1 = βh ∆Ds,t,A + θt + γ∆ys,t−1 + ehs,t, ∀h ∈ {−4,−3, . . . , 4} (3)

while restricting the sample to observations that are either:{
newly treated ∆Ds,t = 1,

clean control i.e. not yet treated at t+ h Ds,t+h = 0

In this specification, ys,t+h denotes total employment in industry s, h years after the

22For comparison, Aghion et al. (2023c) define industry-level investment events as an above-median annual
change in the balance sheet value of industry equipment.
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baseline year t; ys,t−4:t−1 is the average of the outcome in the four years prior to treatment;

∆Ds,t,A is an indicator for an automation “event” in year t, defined as a large increase in

the share of employees working at technology-using plants in industry s; θt captures year

fixed effects, controlling for economy-wide shocks that might be correlated with automation

events; and ∆ys,t−1 is the lagged first-difference of the outcome variable.23 The coefficient of

interest is βh, which captures the dynamic effect of automation on industry-level employment

h years after the event.

This industry-level LP-DiD approach allows us to trace out the evolution of employment

following major increases in automation intensity, comparing industries that experience an

automation event to those that remain untreated over a comparable time horizon. Of course,

it’s possible, for example, that strong demand growth in a given industry drives both large

automation events and an increase in employment growth relative to other industries. As be-

fore, the absence of significant pre-treatment trends is a necessary but not sufficient condition

for satisfying the critical parallel trends and no anticipation conditions.

Our results are displayed in Figure 10. The first thing to note is that we do not observe

significant pre-trends. Turning to our post-treatment coefficients, in most specifications the

impact of automation events on industry-level employment is positive, and we can largely

rule out negative employment effects. This is consistent with our finding that firm-level

automation events increase employment at both focal firms, and at competitor firms within

a given industry. Looking in more detail at the results for CNC machines, we find that

the estimated effects vary substantially from one event threshold to the next. The largest

and only statistically significant effect is based on a threshold set at the median of positive

changes in the share of employees at CNC-using companies. When we focus on the top third

or top quarter of changes, we get small positive but not significant effects. At first sight,

it might seem surprising that more extreme automation events (those in the top quartile

rather than the top half) appear to have a smaller impact on total industry employment.

But it’s important to remember that changes in these event thresholds affect the composition

both of the treatment and control groups: when we shift to top-quartile events, industries

that experience changes above the median but below the top-quartile, and which likely grow

as a result, become part of the control group. This attenuates the estimated treatment

effect, since industries in the revised control group are also likely to experience moderate

automation-related growth.

Turning to our results for industrial robots, we find more consistent results across the

23Although we no longer include industry level controls, note that because LP-DiD uses differenced outcome
variables it implicitly controls for industry fixed effects.
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three thresholds, with a gradual but clearly positive effect emerging four years after a major

industry level automation event. As before, we estimate the largest effect when using the

median threshold, while our estimates using the top third and quartile thresholds are smaller

and similar to one another.

As a final step in the industry-level analysis, we look at the impact of the same set of

industry-level automation events on the industry-level share of manufacturing employees.

As we saw in Section 3, one of the stronger predictions of the task-based framework is that

automation will reduce the employment share of the most exposed workers at both the firm

and industry level. In practice, as we discussed in the Introduction, other empirical studies

have reached mixed conclusions on this question. Our results contribute to this mixed

picture. When it comes to industry-level CNC events, it is difficult to discern any clear

pattern: we find a slight but not significant increase in the manufacturing share immediately

after an automation event, which fades out by year four. For industrial robots, we find a

gradual but statistically significant reduction in the share of manufacturing workers after

four years, across all three event threshold specifications, reversing an apparently positive

pre-treatment trend.
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Figure 10: Industry-level Event Studies, Total Employment

(a) CNC Machine Adoption
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(b) Industrial Robot Adoption
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Notes: These figures show LP-DiD estimates of the effect of industry-level automation events on total

industry employment, as described in the text. Industry is defined at the six digit SIC code. Events are

defined as an increase in the industry share of employees working in firms with a given technology above a

given percentile threshold in the distribution of all positive year-on-year changes. We use three thresholds:

the top half, top third and top quarter of positive year on year changes. These correspond to an increase of

5%, 11%, 17%, respectively for CNC penetration, and 18%, 52%, and 90% for robots. All designs include

year fixed effects and a lag of the differenced outcome variable, as per equation 3, with standard errors

clustered at the industry level. Vertical bars represent 95% confidence intervals.
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Figure 11: Industry-level Event Studies, Share of Manufacturing

Employment

(a) CNC Machine Adoption
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(b) Industrial Robot Adoption
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Notes: These figures show LP-DiD estimates of the effect of industry-level automation events on the industry

share of manufacturing employment. Industry is defined at the six digit SIC code. Events are defined as an

increase in the industry share of employees working in firms with a given technology above a given percentile

threshold in the distribution of all positive year-on-year changes. We use three thresholds: the top half,

top third and top quarter of positive year on year changes. These correspond to an increase of 5%, 11%,

17%, respectively for CNC penetration, and 18%, 52%, and 90% for robots. All designs include year fixed

effects and a lag of the differenced outcome variable, as per equation 3, with standard errors clustered at the

industry level. Vertical bars represent 95% confidence intervals.
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8 Conclusion

This paper provides new evidence on one of the most pressing questions in labour economics:

how does automation affect employment? Using a novel dataset tracking the adoption of

CNC machine tools and industrial robots across UK manufacturing plants from 2005-2023,

we find that automation events are associated with positive employment effects, both at

automating plants and the wider industry level.

Our key finding is that automation technologies increase employment at adopting firms

by approximately 6 to 8% in the four following adoption. This result is robust across different

specifications and estimation strategies, and holds for both CNC machines and industrial

robots. In other words, productivity effects clearly dominate displacement effects at the

firm level, consistent with theories emphasizing automation’s role in expanding output and

creating complementary tasks. At the industry level, we find evidence of positive spillover

effects rather than business stealing, with automation events at focal firms associated with

employment growth among competitors. Industry-wide automation events generally show

positive or neutral effects on total employment.

While initial technology adoption shows little impact on the share of manufacturing work-

ers, CNC expansion events are associated with a significant reduction in the manufacturing

employment share of around 8 percentage points. This pattern is consistent with learning-

based theories of technology adoption, suggesting that firms initially use automation in ways

that complement existing workers but gradually reorganize production processes in more

transformative ways as they accumulate experience with the technology.

Our findings are broadly consistent with other studies using firm-level data on technology,

and suggest that fears of widespread job displacement from automation may be overstated.

Looking forward, several important questions remain. While our findings at the firm and

industry levels are predominantly positive, a complete assessment of automation’s labour

market impact requires examining general equilibrium effects at the labour market and

national levels. Workers displaced from non-adopting firms or industries may face adjustment

costs and transitions that are not captured in our plant and industry-level analysis. The

mechanisms driving positive spillover effects between firms also deserve further investigation.

Finally, while our results provide valuable insights into the employment effects of CNC

machines and industrial robots—two foundational automation technologies—caution is war-

ranted in extrapolating these findings to newer technologies, such as artificial intelligence.

The task-based framework suggests that different technologies may have fundamentally dif-

ferent employment consequences depending on their specific capabilities and the nature of

the tasks they automate. As automation technologies continue to evolve, understanding how
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the employment effects vary across different types of technological change will be crucial for

anticipating future labour market dynamics.
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Appendix

Table A1: Aggregate Employment in MAG Survey vs ONS

(1) (2) (3)

Year MAG Panel Data ONS Data MAG/ONS (%)

2005 2,626 3,120 84.17

2006 2,527 3,025 83.54

2007 2,478 2,985 83.02

2008 2,381 2,884 82.56

2009 2,306 2,657 86.79

2010 2,199 2,570 85.56

2011 2,167 2,564 84.52

2012 2,186 2,603 83.98

2013 2,225 2,560 86.91

2014 2,271 2,621 86.65

2015 2,408 2,641 91.18

2016 2,329 2,655 87.72

2017 2,237 2,680 83.47

2018 2,068 2,715 76.17

2019 1,903 2,689 70.77

2020 2,128 2,618 81.28

2021 1,955 2,544 76.85

2022 1,797 2,612 68.80

2023 1,793 2,576 69.60

Mean 2,165 2,695 80.33

Notes: This table compares total employment (in ’000s) in the MAG survey with official data for total UK

manufacturing employment in the the quarterly Labour Force Survey, produced by the Office of National

Statistics.
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Table A2: Plant Size Distribution in MAG vs ONS UK Manufac-

turing Plants, 2016

Size MAG Emp. (’000s) ONS Emp. (’000s) MAG/ONS (%)

1–9 41 238 17.2

10–49 308 461 66.8

50–249 668 606 110.2

250–499 396 248 159.7

500+ 892 851 104.9

All 2305 2404 95.9

Notes: This table compares total employment (in ’000s) in the MAG survey with official data for total

UK manufacturing employment from the quarterly Labour Force Survey, produced by the Office of National

Statistics, broken down into different plant-size bins. For plants with more than 50 employees, the number of

plants in the MAG survey exceeds the number of plants in the ONS data. This is likely to be driven by the

fact that MAG’s coverage is driven by commercial requirements and not strictly limited to the manufacturing

sector; and it may also reflect varying definitions of employment, such as the separate treatment of full-time

and part-time workers in the MAG survey.
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Table A3: Count of Automation Events, by Year

Events

Year CNC Adoption Events CNC Expansion Events Robot Adoption Events

2005 562 705 -

2006 274 479 -

2007 422 742 -

2008 277 810 -

2009 189 442 -

2010 265 534 -

2011 193 691 -

2012 172 466 -

2013 318 561 -

2014 231 477 -

2015 134 327 242

2016 265 397 204

2017 342 511 243

2018 137 214 173

2019 87 153 162

2020 125 194 106

2021 230 347 51

2022 99 144 638

2023 33 46 7

Total 4,355 8,240 1,826

Notes: This table presents plant-level counts of ‘events’ in the MAG survey. Reliable information

about robot use is only available from 2015.
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Table A4: Effect of Automation Events on Log Employment: Alternative Estimators

Dependent Variable: ∆ Ln Employmentt

Treatment Definition CNC Adoption CNC Expansion Robot Adoption

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Variables

Treatment Effect 5.74∗∗∗ 5.74∗∗∗ 5.06∗∗∗ 5.63∗∗∗ 7.67∗∗∗ 7.68∗∗∗ 6.82∗∗∗ 8.63∗∗∗ 6.95∗∗∗ 6.95∗∗∗ 6.98∗∗∗ 7.05∗∗∗

(0.828) (0.828) (0.932) (0.861) (0.549) (0.550) (0.664) (0.592) (1.05) (1.05) (1.03) (1.17)

∆Ln Employmentt−1 -0.037∗∗∗ -0.037∗∗∗ 0.703∗∗∗ -0.034∗∗∗ -0.035∗∗∗ -0.035∗∗∗ 0.706∗∗∗ -0.035∗∗∗ -0.024∗∗∗ -0.026∗∗∗ 0.718∗∗∗ -0.022∗∗∗

(0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.006) (0.005) (0.006) (0.007) (0.009) (0.005)

Estimator CDLZ CS BJS CC CDLZ CS BJS CC CDLZ CS BJS CC

Fixed-effects

year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

SIC1980-year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 159,262 159,262 123,011 147,825 143,218 143,218 108,379 130,261 112,053 67,868 65,284 104,908

R2 0.050 0.050 0.230 0.053 0.051 0.051 0.232 0.056 0.041 0.047 0.227 0.043

Notes: This table reports the pooled post-treatment effect of automation events on total plant-level employment using four alternative estimators (1) CDLZ is
the Stacked Estimator Cengiz et al. (2019); (2) CS uses the approach from Callaway and Sant’Anna (2021) (3) BJS uses the approach from Borusyak et al. (2024);
(4) CC applies a Composition Correction to our baseline estimator to ensure stable comparison groups, as outlined in Dube et al. (2023). All specifications include
Year by Industry fixed effects. Standard errors are clustered at the plant level. Significance: *** 0.01, ** 0.05, * 0.1.
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Table A5: Effect of Automation Events on Log Employment: Sensitivity to Clustering Method

Dependent Variable: ∆ Ln Employmentt

Treatment Definition CNC Adoption CNC Expansion Robot Adoption

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Variables
Treatment Effect 5.74∗∗∗ 5.74∗∗∗ 5.74∗∗∗ 5.74∗∗∗ 7.67∗∗∗ 7.67∗∗∗ 7.67∗∗∗ 7.67∗∗∗ 6.95∗∗∗ 6.95∗∗∗ 6.95∗∗∗ 6.95∗∗∗

(0.828) (0.970) (0.929) (0.828) (0.549) (0.636) (0.637) (0.549) (1.05) (1.11) (1.14) (1.05)
∆Ln Employmentt−1 -0.037∗∗∗ -0.037∗∗∗ -0.037∗∗∗ -0.037∗∗∗ -0.035∗∗∗ -0.035∗∗∗ -0.035∗∗∗ -0.035∗∗∗ -0.024∗∗∗ -0.024∗∗∗ -0.024∗∗∗ -0.024∗∗∗

(0.005) (0.006) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.007) (0.006) (0.006)

Clustering Plant Industry Ind×Year Robust Plant Industry Ind×Year Robust Plant Industry Ind×Year Robust

Fixed-effects
year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
SIC1980-year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 159,262 159,262 159,262 159,262 143,218 143,218 143,218 143,218 112,053 112,053 112,053 112,053
R2 0.050 0.050 0.050 0.050 0.051 0.051 0.051 0.051 0.041 0.041 0.041 0.041

Clustered (cluster var) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table reports the pooled post-treatment effect of automation events on log of total plant-level employment, using our baseline specification,
but varying the clustering method. Plant = plant level clustering, as in our baseline; Industry = SIC1980 clustering; Industry×Year = SIC1980×Year
clustering; Robust = heteroskedasticity-robust only. All specifications use the CDLZ estimator with Industry by Year fixed effects.
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Table A6: Effect of Automation Events on Log Employment: Sensitivity to Number of Outcome

Lags

Dependent Variable: ∆ Ln Employmentt

Treatment Definition CNC Adoption CNC Expansion Robot Adoption

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Variables
Treatment Effect 5.45∗∗∗ 5.74∗∗∗ 6.16∗∗∗ 5.22∗∗∗ 7.42∗∗∗ 7.67∗∗∗ 6.97∗∗∗ 6.34∗∗∗ 6.94∗∗∗ 6.95∗∗∗ 6.97∗∗∗ 6.65∗∗∗

(0.764) (0.828) (0.887) (0.937) (0.498) (0.549) (0.621) (0.650) (1.05) (1.05) (1.05) (1.04)
∆Ln Employmentt−1 -0.037∗∗∗ -0.040∗∗∗ -0.038∗∗∗ -0.035∗∗∗ -0.037∗∗∗ -0.039∗∗∗ -0.024∗∗∗ -0.020∗∗∗ -0.021∗∗∗

(0.005) (0.006) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.007)
∆Ln Employmentt−2 -0.038∗∗∗ -0.041∗∗∗ -0.042∗∗∗ -0.046∗∗∗ -0.024∗∗∗ -0.017∗∗

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)
∆Ln Employmentt−3 -0.043∗∗∗ -0.052∗∗∗ -0.026∗∗∗

(0.007) (0.008) (0.009)

Number of Lags 0 1 2 3 0 1 2 3 0 1 2 3

Fixed-effects
year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
SIC1980-year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 178,806 159,262 140,622 123,011 162,605 143,218 125,042 108,379 129,636 112,053 95,202 79,141
R2 0.049 0.050 0.051 0.051 0.050 0.051 0.052 0.052 0.041 0.041 0.044 0.047

Notes: This table reports the pooled post-treatment effect of automation events on log of total plant-level employment, using our baseline LP-DiD specification,
but varying the number of lags of the differenced outcome variable. All designs include Year by 6-digit Industry fixed effects. Standard errors are clustered at
plant level. Significance: *** 0.01, ** 0.05, * 0.1.
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really destroy jobs? Evidence from Europe,” Econ. Ind. Democr., February 2023, 44 (1),

280–316.

Koch, Michael, Ilya Manuylov, and Marcel Smolka, “Robots and firms,” Economic

Journal, 1 August 2021, 131 (638), 2553–2584.

Kogan, Leonid, Dimitris Papanikolaou, Lawrence D.W. Schmidt, and Bryan

Seegmiller, “Technology and Labor Displacement: Evidence from Linking Patents with

Worker-Level Data,” Working Paper 31846, National Bureau of Economic Research

November 2023.

51



Lavoratori, Katiuscia and Davide Castellani, “Too close for comfort? Microgeography

of agglomeration economies in the United Kingdom,” J. Reg. Sci., November 2021, 61 (5),

1002–1028.

Lynn, Frank, Thomas Roseberry, and Victor Babich, “A History of Recent Techno-

logical Innovations,” in “Technology and the American Economy: Report of the National

Commission on Technology, Automation, and Economic Progress,” Washington, DC: U.S.

Government Printing Office, 1966.
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