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Abstract

Between 1980 and 2000, growth in the skill premium and a decline in the relative price
of capital led economists to conclude that capital-embodied technical change was driving up
the relative demand for skilled labor. Given the continued steady decline in capital prices
post 2000, these models predict a continual rise in the skill premium. However, post 2000,
growth in the skill premium has slowed down. I argue that as the skill premium increased,
firms adopted new technologies economizing on the use of skilled labor. I quantify this force
using an equilibrium model with costly technology adoption. As capital prices fall, capital-skill
complementarity initially drives up the skill premium. Firms respond by investing in new
technologies which are less skilled-labor-intensive. The model successfully accounts for the
slowing skill premium and the behavior of the labor share. Without technology adoption, the
model predicts a skill premium in 2019 that is 8 percentage points higher and a labor share that
is almost 10 percentage points higher. I provide microeconomic evidence for my mechanism by
showing that accountants relatively more exposed to the adoption of accounting software saw
slower wage growth.
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1 Introduction

Rising labor income inequality in the United States is a matter of lively academic and policy
discussion. A key dimension of this rise in income inequality is the increase in the relative hourly
earnings of skilled workers to unskilled ones, the skill premium. Between 1980 and 2000, the
skill premium rose about 19 percentage points, explaining up to two-thirds of the increase in the
dispersion of labor earnings over this period.

Over this same period, the relative price of capital goods to consumption goods fell steadily. The
combination of these trends has led economists to develop models in which the development
and adoption of new technologies embodied in ever cheaper capital goods has simultaneously
augmented the abilities of skilled workers and led to the substitution or displacement of unskilled
workers (Krusell et al. (2000), Acemoglu and Restrepo (2020b)). As the relative prices of capital
goods continue to fall, such models predict an ever growing skill premium and therefore a con-
tinuous rise in inequality1, even after taking as given the increasing relative supply of skilled
workers.

However, even though the decline in the relative price of capital goods - the fundamental force
behind a rising skill premium in models of capital-skill complementarity - has continued unabated
since 1980, growth in the skill premium has slowed down dramatically. Over the twenty-year
period between 1980 and 2000, it rose by almost 20 percentage points. In the nineteen years between
2000 and 2019, it rose just 6 percentage points. Given paths for the supply of skilled labor and
the relative price of capital goods, standard models of capital-skill complementarity struggle to
rationalize the slowdown in the skill premium.

An additional dimension on which models of capital-skill complementarity fail post-2000 is their
inability to explain a decline in the labor share. This is because in the typical calibration of these
models, capital and skilled labor are gross complements, and capital and unskilled labor are
effectively gross substitutes. A declining price of capital generates a rising skilled labor share,
which eventually dominates the declining unskilled labor share driven by the substitution of skilled
for unskilled labor.

In this paper, I explore a simple idea: as a rising skill premium makes skilled workers more
expensive to hire, firms adopt new technologies economizing on the use of skilled labor. This idea
builds on the insight of Hicks (1932) that relative prices govern the direction of technology adoption
by firms. In a nutshell, the idea is that as the relative price of workers such as accountants, lawyers,
and financial analysts continues to rise between 1980 and 2000, firms begin to find it worthwhile
to invest in technologies, such as new computer software, that can accomplish many of the tasks

1The large increases in the skill premium driven by rising automation and capital-labor substitution has led to some
backlash, with technological progress garnering a lion’s share of blame for recent rises in inequality. This has led some to
call for policy responses to endogenously direct technological change in certain directions. For instance, see Qureshi
(2020), Korinek et al. (2021), Lohr (2022) and Acemoglu and Johnson (2023).
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performed by these workers. This directed technical change decreases the relative demand for such
high-skilled workers and greatly slackens the rate of growth of their relative wages.

The idea that firms will respond to a rising skill premium by directing their technology choices
toward reducing their reliance on skilled workers is closely related to the idea of labor displacement
via automation of the tasks they perform. The existing literature on automation largely documents
the adverse impacts of specific automation technologies such as industrial robots on low skilled
workers2. While the possibility of displacement of lower skilled workers by physical capital-
embodied technology has thus been well established, I argue that the capabilities of modern
technologies embodied in software capital and ICT products can in fact allow them to displace
relatively high skilled workers. For instance, “E-discovery” software programs used in the legal
domain use advanced language-based inference techniques to identify wrongdoing and white-
collar crime, dramatically reducing the number of trained lawyers required in document review3.
Software like SAP/R3, TurboTax and Oracle’s NetSuite have dramatically reduced business’ reliance
on accountants for resource planning, invoicing and tax preparation. Solutions by companies like
Synopsys have displaced the work of computer chip designers by substantially automating skilled-
labor-intensive tasks like circuit design. My paper allows for both channels of displacement, so
that firms can use capital in the form of machinery to displace both low-skilled workers - as in the
existing literature - and also use capital in the form of software technologies to displace high skilled
workers.

Figure 1: LEFT: Rise and Slowdown in the skill premium, defined as the log difference in mean skilled wages
to unskilled wages. The sample is civilian male full-time-full-year employed workers aged 18-65. Wages are first
residualized on race, experience and region. Group mean wages are computed as the weighted average of wages using
labor supply weights as in Autor (2019) for workers in each of five education bins. Skilled wages are the labor-supply-
weighted mean wages of groups with college degrees or post-college education plus half of workers with some college
education. RIGHT: Declining price of capital goods relative to consumption goods from DiCecio (2009), normalized to
one in 1980.

This paper has two parts. First, I propose a simple model of dynamic technology-skill substitution

2See, for instance,Acemoglu and Restrepo (2020b), Acemoglu et al. (2020b), Acemoglu and Restrepo (2020a), and
Hémous and Olsen (2022).

3These include software such as Cataphora, created by Cataphora LLP, which mines information about individual
actions and communications between individuals to identify patterns of “digital anomalies” associated with wrongdoing.
(Markoff, 2011)
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in which both unskilled and skilled workers are exposed to displacement by capital. I show that the
model can rationalize both the initial increase in the skill premium and its subsequent slowdown.
To validate the model’s predictions further, I show that the model also performs well at accounting
for the initial stability and the subsequent decline in the labor share of income. In the model, the
decline in the labor share is driven by slower growth of the share of skilled labor in value added,
which I show is consistent with the data. I perform a counterfactual where I turn off technology
adoption in the model, and show that the model substantially over-predicts growth in both the
skill premium and in the labor share. I stress that throughout this exercise, the behavior of the skill
premium and the labor share over time are not targeted by the model’s calibration.

Second, having shown that the model is consistent with macro data series, I provide microeconomic
evidence that growth in the relative demand for skilled labor has slowed down by studying the
behavior of wages and employment of one group of skilled workers, accountants. I also show that
between 1980 and 2019, there has been a shift in the direction of patenting toward the development
of technologies which perform tasks more similar to the tasks that skilled workers perform.

I now explain the model I construct in more detail. The way I model technology builds on the
task-based approach, following Acemoglu and Restrepo (2018b), in a three-factor production
structure with capital and two different types of labor. One interpretation of this characterization
of technology is that it integrates two dominant approaches in the study of income inequality:
the task-based approach and an extensive literature on capital-skill complementarity following
Krusell et al. (2000), featuring three-factor production functions in which capital and skilled labor
are less substitutable than capital and unskilled labor. I embed this production structure into the
framework of an open-economy neoclassical growth model. The model features firm dynamics in
the tradition of Hopenhayn (1992), with monopolistic competition between producers, augmented
with costly technology adoption decisions.

In the model, production by individual firms requires the completion of tasks specific to skilled
labor and tasks specific to unskilled labor. Some tasks of each type can also be produced by
capital, and technologies are indexed by the shares of tasks of each type that are capital-feasible.
Firms enter each period with a pre-determined technology parametrized by these shares of capital-
feasible tasks. The output of tasks is aggregated with a constant elasticity of substitution into a
skilled-labor-specific and an unskilled-labor-specific intermediate input. The two intermediate
inputs are themselves combined with a constant elasticity of substitution to produce a given firm’s
intermediate output.

The key innovation I introduce here is the possibility of firms adopting new technologies over
time by making upfront technology adoption investments. That is, after production occurs, firms
have the opportunity to invest in adopting new technologies, with which they will be able to
produce starting in the next period. New technologies adopted by firms involve a weakly larger
share of each type of tasks that are capital feasible. The model therefore features two distinct
notions of capital-labor substitution: a short run elasticity, conditional on the technology being
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operated, and a long-run elasticity, which incorporates the possibilities of changing the technology
being operated. The former corresponds to the standard notion of movement along an isoquant.
The latter corresponds to the additional effect of long-run shifts in factor shares as factor prices
themselves change, which involves shifts in the isoquants themselves.

I study the ability of the model to explain the behavior of the skill premium and the labor share of
income using a transition experiment driven by both the declining path for the relative price of
capital and the increasing path for relative skill supplies. To take the simple mechanism I model
to the data, I augment the model in two main dimensions. First, I allow for heterogeneity in firm
productivity, with firms facing persistent productivity shocks. Second, I allow for technologies to
diffuse via entry and exit. Given the paths for the relative price of capital and the increase in the
relative supply of skilled labor, I find that the quantitative model can account for the paths of both
the skill premium and the labor share, despite not being calibrated to target either of these series4.

How does the model accomplish this? Along the initial part of the transition path, capital-skill
complementarity drives up the skill premium by driving up the relative demand for skilled labor.
As the skill premium rises, firms slowly begin directing their technology adoption choices toward
displacing skilled labor performing skilled labor-intensive tasks. As they do this, two things
happen. First, the direct effect of labor displacement reduces the relative demand for skilled
workers. Second, the cost of the skilled task aggregate falls. Firms respond by substituting away
from the unskilled task aggregate and toward the skilled task aggregate, raising the relative demand
for skilled workers. In my calibration, the former effect dominates the latter, and over time, the
relative demand for skilled labor rises at a slower rate.

As in Hubmer and Restrepo (2021), more productive firms, which are larger, make larger in-
vestments in technology adoption, thus enjoying lower costs and higher revenues. The new
technologies they adopt are more capital intensive and imply that these larger firms also have
lower labor shares in total costs. The aggregate labor share decline is thus driven by reallocation
of value added toward low labor share firms, consistent with the evidence in Kehrig and Vincent
(2021). Over time, the adoption of these new less skilled labor-intensive technologies slows growth
in skilled labor demand. This manifests as a slowdown in the share of labor income going to skilled
labor. As the unskilled labor share continues to decline almost unabated, the net effect on the labor
share is an eventual decline.

Having shown that the model is consistent with the macroeconomic facts, I next provide microe-
conomic evidence for the key mechanism in the model, that growth in the relative demand for
skilled labor has slowed down. I do this via two main exercises. First, I perform a case study of
one group of particularly skilled workers, accountants, and show that the adoption of accounting
software is associated with declines in their relative wages. I use microdata on the adoption
of accounting software at the establishment level to construct, at the commuting zone level, a

4The fact that the model is not targeted to explain the behavior of either time series distinguishes my exercise from
that of Hémous and Olsen (2022), who choose the parameters of their model to target the behavior of both the labor
share and the skill premium.
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measure of exposure of accountants to the use of accounting software, measured by the share of
establishments within that commuting zone which have adopted software by a given date. I find
robust evidence that exposure has negative effects on accountants’ wage growth. Second, I use
frontier methods in natural language processing, based on Webb (2020), to show that over time,
newly created technologies are more likely to be associated with the tasks performed by relatively
skilled workers. Rising exposure measured by the similarity of tasks performed by newly created
technologies and tasks performed by given classes of workers robustly predicts a decline in wage
growth.

This paper contributes to the following strands of literature.

First, I contribute to a literature on how technological change affects skill demands and inequality
by proposing a model which simultaneously rationalizes the initial increase in skilled labor demand
between 1980 and 2000 with the subsequent slowdown via endogenous technology adoption. A
long literature including Katz and Murphy (1992), Bound and Johnson (1992), Acemoglu (1998),
Autor et al. (1998), Goldin and Katz (1998), Katz and Autor (1999), Johnson (1997), Acemoglu (2002)
and summarized by Acemoglu and Autor (2011) argues that explaining the joint increase in the skill
premium and the relative supply of skilled workers between 1980 and 2000 requires an expansion in
relative demand for skilled labor. Models of skill-biased technical change (SBTC) explain this increase
via exogenously rising relative skilled labor productivity. KORV (2000) provide an underlying story
for skill-bias in technology, by proposing that skilled labor is more complementary to capital than
unskilled labor and noting that in the presence of investment-specific technical change (Greenwood
et al., 1997), this mechanism can generate an increase in skilled labor demand56. He and Liu (2008)
embed this mechanism in a general equilibrium model with endogenous factor supply and show
that it can account for almost all of the increase in the skill premium between 1980 and 2000.

However, estimated models of capital-skill complementarity struggle to simultaneously match
the decline in the labor share and the slowdown in the skill premium after 2000 (Maliar et al.
(2020), Ohanian et al. (2022), Castex et al. (2022)). Given fixed elasticities of substitution across the
factors of production consistent with the data, the continued decline in the relative price of capital
generates persistent increases in skilled labor demand. For a given growth in skilled labor supply,
this increase drives up its share of value added and the skill premium. Castex et al. (2022) show that
a variant of the original KORV model in which the elasticity of substitution between equipment
and skilled labor increases over time improves the model’s ability to account for the data, but
their model still struggles to match the decline in the labor share over the post-2000 period. A key

5The exercise performed by Krusell et al. (2000) is as follows. They specify a production function for consumption
goods and estimate the key parameters governing substitutability between capital and labor. They manipulate the first
order conditions for profit maximization by the firm to obtain three equations: one for the wage bill ratio, one for the
labor share of value added and one no-arbitrage condition between capital structures and equipment. They estimate the
model by a variant of maximum likelihood using data on factor inputs, output and capital prices. Using the fact that
wages equal marginal products of labor in their competitive model, they then compute the implied path for the skill
premium, finding that it closely replicates the dynamics of the skill premium in the data.

6As Violante (2022) argues, in the presence of a declining capital equipment price, capital-skill complementarity acts
as a skill-biased demand shifter, and hence can be viewed as a microfoundation for SBTC.
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puzzle for this entire literature, therefore, is simultaneously matching the initial increase and then
slowdown of the skill premium while also matching the initial stability and the subsequent decline
in the labor share. I contribute to this literature a resolution of this puzzle - costly endogenous
technology adoption to displace skilled labor as it becomes more expensive - which rationalizes the
entire path of both time series.

The slowdown in the skill premium has been documented previously in work including Autor
et al. (2008), Mishel et al. (2013), and Valletta (2018). Beaudry et al. (2016) show that since 2000,
there was a large slowdown in the growth of occupations that were intensive in cognitive tasks and
therefore in the demand for skilled workers, who are overrepresented in such occupations. Castex
and Dechter (2014) document a decline in the returns to cognitive skills, and with the declining
proportion employed in cognitive and non-routine occupations and slower wage growth for newer
cohorts of college graduates documented in Beaudry et al. (2014). To this literature, I contribute a
model of technological change that explicitly incorporates a channel for the slowing demand for
skilled labor, and evaluate its ability to account for aggregate measures of this slowdown.

Second, I contribute to a literature in macroeconomics and labor economics studying the impacts of
modern technologies, including computers, ICT and software, on labor market outcomes by skill
group. Early studies of the impacts of these technologies, including Bound and Johnson (1992), Juhn
et al. (1993), Berman et al. (1994), Autor et al. (1998), Kaiser (2000), Autor et al. (2002), Bresnahan et
al. (2002), Spitz-Oener (2006), Bartel et al. (2007), Akerman et al. (2015), and Atalay et al. (2018),
generally found that this cluster of technologies was skill-biased, in that the adoption of these
technologies raised the relative demand for skilled workers to unskilled workers7. I contribute to
this literature a model in which the adoption of these technologies can slow the demand for skilled
workers, show that this mechanism is quantitatively important to explain aggregate trends, and
provide microeconomic evidence for this slowdown in demand. My case study of accountants
associates the diffusion of ICT with adverse outcomes for relatively high skilled individuals. This
is consistent with the findings of Jiang et al. (2021), who show that occupations most exposed to
FinTech adoption saw declines in job postings. The occupations they identify as most exposed -
credit analysts and information security analysts - are both occupations identified in O*NET as
skill intensive. My results are also consistent with the findings of Deming and Noray (2020), who
show that the STEM premium enjoyed by graduates majoring in tech-intensive subjects declines
dramatically over the first years of their careers due to obsolesence of their skills. My model
interprets part of this obsolence as the outcome of the tasks they perform being performed by
capital instead. My case study of accountants is also similar to the one conducted in Dillender and
Forsythe (2022), but my data allows for the study of the effect of adopting a more precisely defined

7An influential literature, including the work of Autor et al. (2003), Autor et al. (2006), Goos and Manning (2007),
Autor et al. (2008), Goos et al. (2009), Boehm (2013), Goos et al. (2014), Barany and Siegel (2018) and Michaels et al. (2020),
argues for a richer characterization of the impacts of computers, instead emphasizing that ICT and related technologies
substitute for workers in occupations which are relatively intensive in routine tasks. This literature therefore identifies
the impact of computers as most negative for workers in the middle of the skill distribution, who are likely to work
in relatively routine occupations. My model will not be able to speak to the literature on polarization because it only
admits two skill levels, and a multi-skill extension would be particularly interesting for future research.
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group of technologies on a more precisely defined group of workers.

Third, I contribute to a rapidly expanding literature in macroeconomics and labor economics
studying the effect of automation on labor markets with models of production involving tasks
(Zeira (1998), Acemoglu and Autor (2011), Autor (2013), and Acemoglu and Restrepo (2018b)).
Papers in this literature studying the impacts of automation on labor income inequality8 include
Autor et al. (2003), Autor et al. (2006), Acemoglu and Autor (2011), Acemoglu and Restrepo (2018a),
Acemoglu and Restrepo (2022), and Hémous and Olsen (2022). I contribute to this literature a model
in which dynamic technology adoption choices by firms shapes labor market consequences for
skilled and unskilled workers, but in which these labor market outcomes feed back into adoption
choices. Hubmer and Restrepo (2021) construct a model of costly technology adoption in response
to declining capital prices to study changes in the distribution of labor shares across firms. My
model’s structure is similar to theirs, but distinguishes between skilled and unskilled labor, allowing
me to study the skill premium and the labor share jointly. My model shares features with Holmes
and Mitchell (2008), who construct a model in which plants perform tasks with capital, skilled
and unskilled labor. In their model, firms spend setup costs to be able to displace skilled labor
by unskilled and unskilled labor by capital, and motivate these costs by the generality of the
underlying tasks and the ability of workers to specialize in them. Unlike their work, my model
features dynamic forward-looking decisions to adopt technologies and allows for the idea that
capital directly displaces skilled workers at tasks that are specific to skilled workers.

Fourth, my mechanism is similar to the one emphasized in a literature on directed technological
change, including the work of Hicks (1932), Habakkuk (1962), Allen (2009), Acemoglu (1998),
Acemoglu (2010), Acemoglu and Restrepo (2018a), Aum (2018) and Hémous and Olsen (2022).
This literature has largely focused on the impacts of automation on relatively low-skilled workers.
Notable exceptions are Acemoglu and Restrepo (2018a), Aum (2018) and Hémous and Olsen (2022).
Acemoglu and Restrepo (2018a) features a three-factor production structure, but does not contain a
detailed analysis of directed technology adoption, since they focus throughout on marginal changes
to technical thresholds around a given allocation. Aum (2018) uses a model in which software
capital complements high skilled workers and equipment capital complements medium skilled
workers, showing that a decline in software prices can produce polarization in the labor market and
a slowdown in the demand for skilled labor9. While his mechanism is related to mine, Aum does
not study dynamics of either the labor share or skill premia. Hémous and Olsen (2022) construct a
model in which firms can respond to rising wages of unskilled workers by engaging in technology
adoption to displace them at the tasks they perform with capital. My model generalizes this setup
substantially by allowing skilled workers to also be displaced by capital, allowing it to account for

8Moll et al. (Forthcoming) study impacts of automation for income and wealth inequality, arguing that automation
has an additional impact on inequality by raising capital incomes relative to labor incomes.

9His model achieves this across steady states via endogenous technological change. Intuitively, a lower price of
equipment raises the relative demand for complementary skilled labor, raising the demand for software which is itself
complementary to skilled labor. But this raises the profits to automating skill-intensive tasks, which offsets the growth of
skilled labor demand.
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the paths of both the skill premium and the labor share despite not targeting either series..

Fifth, I contribute to the literature on the evolution of the labor share of income, reviewed in
Grossman and Oberfield (2022). There is extensive debate in the literature on the magnitudes of
this decline due to measurement issues involving, among others, the treatment of stock options
(Eisfeldt et al. (2021)), the treatment of the labor portion of proprietors’ incomes (Gollin (2002),
Elsby et al. (2013)), intangible capital and changes in accounting norms surrounding IT capital (Koh
et al. (2020)), how to account for depreciation in measuring value added (Weitzman (1976), Hulten
(1992)), and the role of housing (Rognlie (2015), Gutiérrez and Piton (2020)). However, there is a
general consensus that this share has declined for the aggregate economy, and particularly so in
manufacturing and retail, two critical sectors for US employment. A wide variety of explanations
have been proposed for the decline of the labor share, including the effects of trade (Elsby et al.,
2013), rising market power (Barkai (2020), Autor et al. (2020), (De Loecker et al., 2020)), and long-run
substitution of capital for labor driven by investment-specific technical change (Karabarbounis and
Neiman (2013), Eden and Gaggl (2019)). Kehrig and Vincent (2021) show that the decline in the
labor share is driven by reallocation toward low labor-share firms, and not by a decline in the mean
(or median) labor share. My paper is closest to explanations emphasizing the role of automation of
production processes for the decline in labor demand, including Acemoglu and Restrepo (2018a),
Aum and Shin (2020), Cheng et al. (2021), Hubmer and Restrepo (2021), Aum and Shin (2022), and
Hémous and Olsen (2022). Much of this literature does not explore implications of automation for
labor income inequality, focusing instead on the functional distribution of income between labor
and capital. Aum and Shin (2020) propose that the steep descent in the labor share owes at least
partly to the rising ability of software capital to displace relatively skilled workers, the mechanism
I attempt to quantify in this paper, but do not discuss implications for the skill premium. To the
best of my awareness, there is no work that directly connects the large literature on the declining
labor share to the literature on relative skill demands. This paper fills this gap.

2 The Skill premium and the Labor Share

In this section I describe the slowdown in the skill premium and the decline in the labor share.

First, I describe the construction of the time series for the skill premium. Following much of the
literature linking technology to skills, I rely on the Current Population Survey’s Annual Socio-
Economic Complement Dataset10, available from IPUMS (Flood et al., 2021). Throughout this paper,
I focus on males aged 18-65 who are full-time-full-year employed (i.e. work at least 35 hours a
week for at least 50 weeks a year). I drop workers with hourly wages under the real minimum
wage and drop observations in the top 1% of the wage distribution by sex in each year to minimize

10The CPS provides data on individual earnings in the form of market income earned from wages or self-employment
over the reference year, and I define labor income as the sum of these two components, following Hoffmann et al. (2020).
The CPS also provides data on usual hours worked, and I use this data to construct a measure of hourly earnings for
each worker.
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Figure 2: The behavior of the skill premium, 1980-2019 and the behavior of the relative supply of skilled workers. All
data from CPS Annual Socio-Economic Complement for full-time-full-year employed men aged 16-64. Hourly earnings
defined as market labor income divided by usual hours worked per year, itself the product of usual hours worked per
week times weeks worked per year. Earnings are composition-adjusted for race and experience following Autor (2019).
More details on data cleaning in Appendix section A.3. The relative supply of skilled workers, here plotted as the share
of hours worked by skilled workers, is the share of hours worked by workers with a college degree or a post-college
education plus half the share of workers with some college. The red line represents the predicted skill premium obtained
by running the time-series regression log(wst/wut) = β0 + β1 log(ℓs/ℓu) + β2t + εt over the period 1963-1987, following
Katz and Murphy (1992). The green line is the predicted skill premium obtained from running the same regression on
data from 1963 to 2000.

the impact of outliers and the adjustments made for topcoding. Appendix section A.3 provides
more details on the data cleaning procedure.

The left panel of figure 2 shows the slowdown in the growth rate of the skill premium. Between
1980 and 2000, the gap between composition-adjusted hourly earnings of skilled and unskilled
male workers rose from about 32 log points to over 55 log points, an increase of 23 log points.
Between 2000 and 2019, this gap rose by just 5.5 log points. This slowdown is not just driven by
the wages of workers with just a bachelor’s degree - the premium for having some postgraduate
education rose by 39 log points between 1980 and 2000, and then rose just 5.8 log points between
2000 and 2019. This striking slowdown since about 2000 has also been documented in Beaudry et
al. (2016) and discussed in Valletta (2018).

Can a rising relative supply of skilled labor by itself account for this slowdown? First, the right
panel of figure 2 shows that while the relative supply of skilled labor has increased over this period,
there is no clear trend break in 2000 that can account for this slowdown. Second, to make this point
more formally, I replicate an exercise in Autor (2017) and plot the predicted skill premium one
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Figure 3: The decline in the labor share, here the non-farm business labor share of value added. Data from the Bureau
of Labor Statistics and the BEA-BLS Integrated National Accounts.

would obtain using the Katz and Murphy (1992) regression

log(wst/wut) = β0 + β1 log(ℓst/ℓut) + β2t + εt

estimated on different subsets of the data. Using the original Katz and Murphy sample of data from
1963-1987, one obtains a substantial over-prediction of the skill premium, by over 20 log points
at the end of the sample period. Using an extended sample until 2000, the regression’s fit on the
in-sample period improves dramatically, but still predicts more rapid growth in the skill premium
over this period than in the data. This data description device suggests that the combination
of growth in skilled labor supply and substitution of skilled labor for unskilled labor driven by
exogenous skill-biased technical change, proxied for by the time trend in this regression, cannot by
itself account for the slowdown in the skill premium. Appendix A.1 considers some other possible
forces for the slowdown in the skill premium, including composition effects across occupations
and industries.

Figure 3 shows the path of the labor share, which exhibits a trend of stability prior to 2000 followed
by a striking decline post 2000. This decline is not driven by a compositional shift towards relatively
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Figure 4: The decomposition of the labor share by skill level. Data from the Bureau of Labor Statistics and the BEA-BLS
Integrated National Accounts.

low or declining labor share sectors. Alternative measures of the labor share follow very similar
trends11. The literature has documented that this decline in the labor share owes largely to the
declines within the manufacturing and retail trade sectors, where technology-driven displacement
of workers is particularly important.

Figure 4 decomposes the labor share by skill type. It shows that the stability of the labor share in
the period 1980-2019 is explained by a rise in the skilled labor share that almost perfectly offsets the
decline in the unskilled labor share. Post 2000, a noticeable slowdown in the growth rate of the
skilled labor share means a weakening of this offsetting force. In appendix figure 21 I show that the
slowing growth in the skilled labor share explains almost 70% of the 6.6 percentage point decline
in the total labor share. Figure 22 shows that over the period 2000-2017, this slowdown is visible
across most sectors of the economy. The fact that the decline in the labor share is largely explainable
by the declining share of relatively skilled workers, raises questions about stories for the declining
labor share which emphasize the role of factors which are neutral with respect to skills, such as the
role of rising markups12. By contrast, my model will be able to qualitatively account for the decline
of the labor share via a slowdown in the skilled share.

11See Atkeson (2020), Gutiérrez and Piton (2020), Koh et al. (2020), Barkai (2021), and Grossman and Oberfield (2022)
for discussions of measurement issues surrounding the labor share’s decline.

12It is possible that rising markups can be non-neutral with respect to skills if skilled labor is disproportionately
compensated by payments in stock options, which represent claims on the profits of firms. Eisfeldt et al. (2021) provide
some evidence that this is the case.
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Household

• trades global bonds, int. rate r̄

• rents K, lab. supp. S, H − S to
firms

• consume final good

Intermediate Good Firms

• heterogeneous, idio. state s = (λs, λu, z)

• TFP z, technology param. λ

• rents k(s) and hires ℓs, ℓu

• exit, exog rate pE, replaced by entrants

• if not exit, make differentiated intermedi-
ates

• invest to adopt tech λ′
Retailer

• buy int. goods, sell final

• final = CES over int., α

wsℓs + wuℓu + rkk + Π

p(s)y(s)

YY

Figure 5: Model structure.

3 Model

Time is discrete and denoted by t = 0, 1, . . . . I consider a small open economy in which a single
risk-free asset can be traded in international markets promising a constant rate of return r̄. There
are no aggregate shocks in the economy, and I will focus on perfect foresight transitions or steady
states throughout. There are three kinds of goods in the economy: a final good, a continuum of
fixed mass of differentiated intermediate goods and capital. The final good is the numeraire in this
economy and is the only good which is tradable. The economy has three agents: final good retailers,
a fixed mass of intermediate good producers and representative households. The final good is
produced competitively by final good retailers who purchase intermediate goods to produce it.
The final good can be consumed or converted to capital for saving at the rate of qkt final goods per
unit of capital. I assume that the time path of qkt is exogenous13.

The representative household consumes final goods. It saves in capital and in final-good-denominated
assets paying a world interest rate r̄, assumed constant. I assume that the household’s discount
factor β satisfies β (1 + r̄) = 1. Households own all firms and retailers in the economy. They are
endowed with a certain amount St of skilled labor and Ut = H − St of unskilled labor, which they
supply inelastically to intermediate goods producers each period. They can save by accumulating
capital or in the internationally traded bond paying r̄. To accumulate a unit of capital at date t, a
household operates a technology that converts qkt units of the final good into one unit of capital.
The path for qkt, which will reflect the relative price for capital, is the key driving force in this model

13This model is isomorphic to one where capital goods are produced using final goods, in which case qkt can be
interpreted as the relative total factor productivity of the technology that produces final goods to the one that produces
capital. Falls in qkt correspond to increasing efficiency in the creation of capital goods and a corresponding decline in
their relative price, as in Greenwood et al. (1997).
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and will be exogenously given. A unit of capital accumulated at date t is operated by firms at date
t + 1, and in the process of production, it depreciates at rate δ. The renting intermediate good firm
pays a rental rate rkt+1 and returns the undepreciated fraction 1 − δ of the unit of capital rented to
the household at date t + 1. All wages and rental payments are paid in units of the final good, and
all consumption takes place in the final good. For the purposes of this model, the only roles played
by households are to pin down the supplies of skilled and unskilled labor to intermediate good
firms, and to pin down the rental rate on capital.

Final goods are produced by the final goods retailer, which purchases the output of all intermediate
good firms in the economy and packages them into the final good. Since intermediate goods are
differentiated and intermediate good firms are monopolists in the production of their specific inter-
mediate, they behave monopolistically and make profits, taking the downward sloping demand
for their specific intermediate goods as given. These profits will induce firms to invest in new
technologies as the price of capital qkt falls over time.

Each differentiated intermediate good is produced by a single intermediate good firm. Production
of intermediate goods requires the completion of a measure 1 of tasks which only skilled labor
can produce and a measure 1 of tasks which only unskilled labor can produce. Let xu ∈ [0, 1] and
xs ∈ [0, 1] index skill and unskill-intensive tasks respectively. A unit of unskilled labor produces
ψu (xu) units of the unskilled task xu, while a unit of skilled labor produces ψs (xs) units of the
skilled task xs. Tasks of each type are ordered such that ψ′

s > 0 and ψ′
u > 0. All tasks can in principle

be produced with capital as well, and the productivity of capital at each task xu and xs is assumed
to be 1. Thus, ψu (xu) and ψs (xs) also characterize the comparative advantage that unskilled and
skilled labor have at producing each task, and the assumptions that ψ′

s > 0, ψ′
u > 0 correspond

to imposing that tasks are ordered in increasing order of labor’s comparative advantage14. An
intermediate good firm hires skilled and unskilled labor and rents capital from the households. It
then decides on an allocation of these factors of production to tasks.

In each period, the technology an intermediate good firm operates is parametrized by three numbers
s = (λs, λu, z) where z is the firm’s total factor productivity and λs, λu are parameters that govern
the extent to which firms’ technologies rely on skilled labor inputs and unskilled labor inputs. In
particular, at date t, it is only feasible for firms to perform unskilled tasks in the interval [0, λu] and
skilled tasks in the interval [0, λs] with capital. The technology a firm operates therefore involves a
constraint on the measure of each type of tasks that capital can perform. Henceforth, I will refer to
λs, λu as the capital feasibility cutoffs characterizing a technology. After production, intermediate
good firms choose whether or not to make innovation investments, and if they choose to, how much
to invest. Intermediate good firms which make innovation investments will enter the next period
with new capital feasibility cutoffs λ′

i ≥ λi, i = s, u. In each period, I assume that intermediate
good firms pay all of their profits net of innovation investments as dividends to the representative
household. The vector s is therefore also the idiosyncratic state for all intermediate good firms.

14One way to interpret this ordering is that it is increasing in the “non-routineness” of the tasks, i.e. higher xi tasks are
less routine than lower ones.
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3.1 Model Setup

3.1.1 Household

The economy is populated by a representative household which has H members. The representative
household provides all of its members with a common level of consumption. At date t the household
has St skilled members and Ut = H − St unskilled members, each of whom supplies one efficiency
unit of their respective labor type to the firm inelastically. At each date, the household provides
labor services St, Ut, consumes Ct, and saves. It can save by either buying internationally traded
bonds Bt+1, or by accumulating homogeneous capital1516 KS

t+1. The household’s problem is to
choose sequences

{
Ct, KS

t+1, Bt+1
}∞

t=0 such that given initial capital holdings K0, bond holdings B0,
the world interest rate r̄ and perfectly foreseen paths for labor supplies {St, Ut}∞

t=0 and the price of
capital {qkt}∞

t=0, the household’s chosen sequences maximize

max
{Ct,Bt+1,KS

t+1}

∞

∑
t=0

βt log Ct subject to

Ct + qktKS
t+1 + Bt+1 ≤ wstSt + wutUt + (rkt + (1 − δ)qkt)KS

t + Πt + (1 + r̄) Bt

lim
s→∞

Bs+1

(1 + r̄)s ≤ 0

The household’s optimality conditions for consumption give the Euler equation

Ct+1

Ct
= β (1 + r̄) (1)

The household’s optimality conditions for the choices of KS
t+1 and Bt+1 can be combined to obtain

the no-arbitrage condition

1 + r̄ =
rkt+1 + (1 − δ) qkt+1

qkt
(2)

which equates the returns to saving on the two assets. The returns to saving in capital include the
rental rate on capital relative to the cost of purchasing the unit of capital, as well as the capital
losses, if any, on the undepreciated capital stock remaining after production. Holding qkt+1 fixed, a
fall in the level of capital prices today qkt requires a decline in rkt+1 to restore no-arbitrage.

15I assume that bond payoffs are denominated in final goods and that the household trades these bonds with deep-
pocketed risk-neutral international investors, who are endowed with a sufficiently large endowment of final goods to be
able to meet any obligations associated with their bond position. The real rate of return on internationally traded bonds,
r̄, thus satisfies 1

1+r̄ = βF where βF is the one-period discount factor these investors apply to payoffs denominated in
final goods. I assume that βF = β.

16The superscript S on capital KS is used to distinguish capital supply from capital demand, which will be denoted K.
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3.1.2 Final Goods Retailers

Final goods are produced by a competitive final goods retailer which packages the output of
intermediate good firms into final output. Denote the vector of idiosyncratic state variables that
an intermediate good firm in the economy takes as given by s. Recall that s = (λs, λu, z). The
competitive final goods retailer operates the technology

Yt =

[∫
yt(s)

α−1
α dMt(s)

] α
α−1

(3)

where Mt(s) is the mass of actively producing firms with idiosyncratic state s at date t. The final
good has a price Pt = 1, i.e. final output is the numeraire. The final goods retailer therefore solves
the profit maximization problem

max
Yt,yt(s)

Yt −
∫

pt(s)yt(s)dMt(s) subject to [λF
t ] : Yt =

[∫
yt(s)

α−1
α dMt(s)

] α
α−1

In appendix section A.4, I show that the focs of this problem yield the following demand curves for
firms with state s:

yt(s) = (pt(s))
−α Yt (4)

and, since the final good is the numeraire, we require17 that∫
pt(s)1−αdMt(s) = 1 (5)

3.1.3 Intermediate Goods Producers: Technology

In each period, the technology a continuing intermediate good firm operates is parametrized by
three numbers s = (λs, λu, z) where z is the firm’s total factor productivity and λs, λu are parameters
that govern the extent to which firms’ technologies rely on skilled labor inputs and unskilled labor
inputs.

I now describe in detail how the technology that a firm enters a period t with works. Producing
output involves completing a measure 1 of skill-specific tasks. Let xs ∈ [0, 1] and xu ∈ [0, 1] index
these tasks. I assume that each type of tasks is specific to its labor type - that is, skilled labor only
performs tasks xs ∈ [0, 1] and unskilled labor only performs tasks in xu ∈ [0, 1]. This rules out
the possibility of substitution of skilled labor for unskilled labor within a task18. At date t, it is

17This equation is just the analogue of the profit maximization equation from any CES production function, and
effectively states that since the final good retailer behaves competitively, the price it charges Pt = 1 must equal the
marginal cost of production, which is a nonlinear combination of the prices of the intermediate goods it aggregates.
Acemoglu and Restrepo (2018a) and Hubmer and Restrepo (2021) call this equation the ideal price index condition.

18This assumption makes the technology firms operate in my model different from the one outlined in Acemoglu
and Restrepo (2018a), and is analogous to assumption 1 in Acemoglu and Restrepo (2022) and is made for tractability.
Relaxing it, possibly along the lines that Acemoglu and Restrepo (2022) do using a local approximation, is left for future
research.
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feasible for a firm with technology parameters λs and λu to perform skilled tasks in the interval
[0, λs] and unskilled tasks in the interval [0, λu] with capital. A unit of unskilled labor produces
ψu (xu) units of the unskilled task xu, while a unit of skilled labor produces ψs (xs) units of the
skilled task xs. I assume that tasks of each type are ordered such that ψ′

s > 0 and ψ′
u > 0 - that is,

labor’s comparative advantage at producing tasks strictly increases with the tasks’s index19.

At each date, the firm entering with state s = (λs, λu, z)chooses an allocation of each labor type
and capital across each task{

{ℓu (xu) , ku (xu)}xu∈[0,1] , {ℓs (xs) , ks (xs)}xs∈[0,1]

}
where ks (xs) , ku(xu) denote the quantities of capital allocated to the production of each set of tasks.
Given this allocation, output produced is given by

y (λs, λu, z) = z
[
µGu

σ−1
σ + (1 − µ)Gs

σ−1
σ

] σ
σ−1

(6)

where for i = u, s,

Gi =

[∫ 1

0
Yi(x)

ρ−1
ρ dx

] ρ
ρ−1

Yi(x) =

ψi(x)ℓi(x) + ki(x) x ≤ λi

ψi(x)ℓi(x) x > λi

and the functions ψu, ψs satisfy the following assumptions:20

• ψ′
u(x) > 0, ψ′

s > 0. That is, tasks are ordered so that labor’s comparative advantage is
increasing in the task index for each labor type.

• 1
ψi(xi)

is convex in xi. That is, as the task index rises, the unit labor requirement for a given
task declines at a slower rate for a given increment in xi. Section 5 discusses the importance
of this assumption.

• 0 ≤ limx→0 ψu(x), limx→0 ψs(x) < 1. That is, capital is more productive than labor at at least
some tasks.

• limx→1 ψu(x) = limx→1 ψs(x) = ∞. That is, labor is more productive than capital at at least
some tasks.

19This assumes that there is a unidimensional attribute of each task, say its “routineness”, which fully determines the
comparative advantage labor has at that task. See Lindenlaub (2017) for an analysis of sorting across tasks with multiple
attributes.

20These assumptions are Inada-like conditions and guarantee that there is always some demand for capital, unskilled
and skilled labor, no matter how skewed factor prices are in favor of one factor.
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•
∫ 1

z ψi(x)ρ−1dx exists for all z ∈ [0, 1] and for both i = u, s. That is, a well-defined index of
labor productivity exists for both types.

I assume that firm TFP z follows an AR(1) process in logs, so that

log zt+1 = ρz log zt + εt+1 where ε ∼ N
(
0, σ2

ε

)
(7)

Finally, in order to upgrade its technology parameter λi to λ′
i, a firm pays the cost κi (λ

′
i, λi)Yt

where

κi
(
λ′

i, λi
)
=

0 λ′
i ≤ λ

κ0 (λ′
i − λi)Y λ′

i > λ

This formulation for the upgrading cost has two properties. First, the marginal cost of innovation
is always positive, which will be useful in guaranteeing the existence of a steady state in which
all firms use the same technology. Second, the normalization by GDP in the cost function is
important to ensure that the firm’s value function is homogeneous of degree 1 in aggregate output,
a precondition for balanced growth when the relative price of capital is constant. I interpret the
cost κi (·) as a stand-in for a wide range of costs that firms must pay in order to upgrade their
technologies, including the cost of purchasing and installing new capital (Acemoglu and Restrepo
(2020a)), the foregone output due to the time required to retool production processes (Kopytov et
al. (2018)), as well as the managerial and organizational costs associated with the introduction of
new technologies (Bresnahan et al. (2002)).

3.1.4 Exit and Entry

After production occurs, intermediate goods firms exit with an exogenously given probability pE. If
they exit, their realized value is zero. If they do not, they choose the technology they want to enter
the next period with and pay the costs associated with this choice. A measure pE M̄ of firms exit in
each period, and a mass pE M̄ new entrants enter the economy at this date to replace them, ensuring
that the mass of firms is always constant. At entry, a new entrant draws an initial productivity
parameter zE from the stationary distribution of the AR(1) process for TFP 7. I assume that new
entrants’ technologies are parametrized by λEst and λEut where

λEit =
1
M̄

∫
λit(s)dMt(s)

for i = s, u and M̄ is the constant mass of intermediate good firms. This allows for technology
diffusion in the economy via entry. While inconsequential for the main mechanism I model,
allowing for technology diffusion via entry is important for the dynamics of the model and in order
to establish the existence of a well-defined steady state.
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Ys = ψs (xs) ℓs (xs) Yu = ψu (xu) ℓu (xu) + ku (xu)
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Figure 6: Description of technology of production for an intermediate good producer with capital feasibility cutoffs
λs, λu. To produce a measure 1 of ℓs-specific and a measure 1 of ℓu specific tasks, indexed by xs and xu respectively
must be performed. Consider task xs as indicated in the figure. Since xs > λs this task is capital-infeasible, so it must be
performed by (skilled) labor. Task xu, on the other hand, satisfies xu < λu and is capital feasible. Capital and unskilled
labor are perfect substitutes at producing this task. All ℓs-specific tasks are aggregated to form the skilled labor-specific
intermediate Gs and all ℓu-specific tasks are aggregated to form the unskilled labor-specific intermediate Gu. These
task-specific intermediates are further aggregated by a CES aggregator to produce the intermediate good producer’s
output, y.

3.1.5 Intermediate Goods Producers’ Problem

The problem of a firm is to choose sequences of factor inputs {kt, ℓst, ℓut}, and the sequence of
allocations of capital and each labor type over tasks at each date,{

{ℓut (xu) , kut (xu)}xu∈[0,1] , {ℓst (xs) , kst (xs)}xs∈[0,1]

}
and sequences of technology parameters λt ≡ {λut, λst} to maximize the present value of its
profits net of costs of technology upgrading. When solving this problem, the firm takes the paths
of factor prices wst, wut, rkt and aggregate demand Yt as given. Given the aggregate state vector
st = (wst, wut, rkt, Yt, qkt) the firm’s value VF

t solves the following Bellman Equation.

VF
t (λ, z; st) = πt (λ, z; st)

+ (1 − pE) max
λ′

i≥λi

{
− ∑

i=u,s
κi
(
λ′

i, λi
)

Yt +
Et
[
VF

t+1 (λ
′, z′; st+1)

]
1 + r̄

}
(8)
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where the period profit function πt (λ, z; st) solves

πt (λ, z; st) = max
{Gi ,{YGi(x),ℓi(x),ki(x)}1

x=0}i=u,s
,p,y

py

−
∫ 1

0
(rktku(x) + wutℓu(x)) dx

−
∫ 1

0
(rktks(x) + wstℓs(x)) dx

subject to, for i = s, u,

y ≥ p−αYt

y ≤ z
[
µGu (ℓu, ku)

σ−1
σ + (1 − µ)Gs (ℓs, ks)

σ−1
σ

] σ
σ−1

Gi ≤
[∫

Yi (xi)
ρ−1

ρ dxi

] ρ
ρ−1

Yi (xi) =

ψi (xi) ℓi (xi) + k (xi) xi ≤ λi

ψi (xi) ℓi (xi) xi > λi

ki (xi) ≥ 0

ℓi (xi) ≥ 0

and TFP z follows the law of motion

log zt+1 = ρz log zt + εt+1 where ε ∼ N(0, σ2
ϵ )

It is analytically convenient to split this problem into a static part and a dynamic part. First, we
solve for the cost-minimizing allocation of capital and each type of labor across tasks associated
with the production of a unit of the task intermediate Gi. Let PGit(λi; st) be the minimized cost
of producing a unit of the task intermediate Gi, i = s, u. Given PGit (λi; st), we next solve for
minimized cost of producing a unit of the intermediate good y. Let CFt (λ, z; st) be this minimum
unit cost, which by constant returns is the marginal cost function. Given the marginal cost of
producing intermediate good output, we can solve for the optimal price and output decision made
by the firm to obtain the profit function. Second, given the profit function πt (λ, z; st) we can solve
the Bellman Equation 8 to obtain optimal technology adoption decisions. Let gλit (λ, z; st) denote
the policy functions for choices of new technology.

3.1.6 Static Cost Minimization and Profit Maximization

In this section, I characterize the static cost function associated with the firm’s choice of inputs and
show that it is well-defined and isomorphic to that of a nested CES production function. I also
show that the cost function is convex in the technology parameters, guaranteeing that the profit
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Figure 7: Left panel: Determination of λ∗
s in the case where the constraint on technological possibilities is binding

(the case for i = u is completely symmetric). A cost-minimizing firm that could freely choose λ∗
s would choose to set

λ∗
s = λ̂ (ws/rk), but this is impossible because the technological possibilities at that firm only extend until λs < λ̂s. The

gap between ws/ψs(λ) and rk is a measure of how valuable additional automation investments are to the firm. If this
gap is sufficiently large to outweigh the costs of investment in new technologies, all else equal, the firm will choose
a higher λ in the next period. The right panel shows an analogous situation, except now λs > λ̂ (ws, rk). Such a firm
always chooses to set λ∗

s = λ̂ (ws, rk).

function is concave in the technology parameters and ensuring that a well-defined solution to the
firm’s dynamic problem exists.

Lemma 1. Consider a firm with state s = (λs, λu, z). The cost-minimizing allocation of factors of production
to tasks is characterized as follows. For i = s, u let

λ∗
i (λi; st) = min

{
λi, λ̂i (st)

}
, and λ̂i (st) solves

wit

ψi
(
λ̂i (st)

) = rkt

Then, the firm optimally chooses to produce all tasks of type i in the interval xi ∈ [0, λ∗
i ] using capital and all

tasks xi ∈ (λ∗
i , 1] using labor ℓi.

Proof. In appendix.

This allocation rule is intuitive. Given factor prices wi, rk and the monotonicity and Inada conditions
on ψi, there is a cutoff task λ̂i associated with each labor type, such that for any task xi < λ̂i it
is optimal to execute the task using capital and for any task xi ≥ λ̂i it is optimal to use labor
(recall that the comparative advantage labor of type i enjoys over capital, ψi (xi), is increasing in
xi). If the current technology parameter of the firm λi exceeds this cutoff, the firm’s choice of λ∗

i is
unconstrained and equal to λ̂i. In this case, the firm’s choice of technology is independent of its
current technology state. However, if the parameter λi < λ̂i, it is technologically infeasible for the
firm to use capital to perform tasks in

(
λi, λ̂i

)
, even though it would be profitable for the firm to do

so. Again, since ψi (xi) is strictly increasing in xi, it is clearly optimal for the firm in such cases to
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just set λ∗
i = λi. This will be the relevant case for the equilibria I will study. Figure 7 illustrates

both situations.

Given this allocation rule, it is straightforward to show that for i = s, u, the minimized cost of
producing the task intermediate Gi is given by

PGit(λi; st) =

[
r1−ρ

kt λ∗
i (λi; st) + w1−ρ

it

∫ 1

λ∗(λi ;st)
ψi(x)ρ−1dx

] 1
1−ρ

where, as above,

λ∗
i (λi; st) = min

{
λi, λ̂i (st)

}
, and λ̂i (st) solves

wit

ψi
(
λ̂i (st)

) = rkt

Given the nested CES structure of the cost function, cost minimization over the choices of how
much of each task intermediate Gi to use and an application of Shephard’s Lemma give us the
following characterization of the cost and conditional input demand functions.

Lemma 2. Consider a firm with state s = (λs, λu, z). The marginal cost function for such a firm is given by

CFt (s; st) =
1
z

[
µσPGut(·)1−σ + (1 − µ)σPGst(·)1−σ

] 1
1−σ

(9)

where

PGit(λi; st) =

[
r1−ρ

kt λ∗
i (λi; st) + w1−ρ

it

∫ 1

λ∗(λi ;st)
ψi(x)ρ−1dx

] 1
1−ρ

where
λ∗

i (λi; st) = min
{

λi, λ̂i (st)
}

, and λ̂i (st) solves
wit

ψi
(
λ̂i (st)

) = rkt

The conditional input demand functions for this firm satisfy

k(s; st) =
yt(s; st)C̃Ft (s; st)

σ

z

[
µσ PGut(s; st)ρ−σ

rρ
kt

λu + (1 − µ)σ PGst(s; st)ρ−σ

rρ
kt

λs

]
(10)

ℓs(s; st) =
yt(s; st)

z

(
(1 − µ) C̃Ft (s; st)

PGst (λs; st)

)σ (PGst (λs; st)

wst

)ρ

Ψs (λs) (11)

ℓu(s; st) =
yt(s; st)

z

(
µC̃Ft (s; st)

PGut (λu; st)

)σ (PGut (λu; st)

wut

)ρ

Ψu (λu) (12)

where I define21 Ψi(λ) =
∫ 1

λ ψi(x)ρ−1dx and C̃Ft(λ; st) =
[
µσPGut(·)1−σ + (1 − µ)σPGst(·)1−σ

] 1
1−σ .

Proof. In appendix.

Note that the unit cost function 9 is isomorphic to the cost function that emerges from a nested CES

21Note that Ψi (λ) is an index of the productivity of factor input i = ℓs, ℓu and that C̃Ft is just the marginal cost of
production for a firm with unit TFP.
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production function. In particular, when λs, λu are constants, so are the objects Ψi(λ). In this case,
it is easy to show that the marginal cost function above is identical to the marginal cost function
that would be obtained for a firm operating the two-stage nested CES technology

y = z
[
µGu

σ−1
σ + (1 − µ)Gs

σ−1
σ

] σ
σ−1

in which, for i = u, s

Gi =

[
λik

ρ−1
ρ

it + Ψi (λi) ℓ
ρ−1

ρ

it

] ρ
ρ−1

This technology is isomorphic to the one presented in, for instance, Autor et al. (2022). The key
distinction between the nested CES formulation and the model I present is that in the former, λi is a
structural parameter which is typically assumed to be fixed whereas in my model, λi is flexible and
an endogenous choice that firms make. Thus, while my model allows for capital-labor substitution
via movements along an isoquant exactly as in standard models, it features the additional possibility
of actually rotating the isoquants themselves to reach an even lower isocost line. Finally, given the
cost function CFt (s, st), we can define the profit function as the maximized value of the profits the
firm earns given its technology and the demand curve it faces for its output from the final goods
retailer,

πt (s; st) = max
p,y

py − CFt (s; st) y subject to p =

(
y
Yt

)−1/α

The solution to this static problem yields the standard constant markup pricing equation

pt (s; st) =
α

α − 1
CFt (λ, z; st) (13)

which in turn yields the profit function

πt (s; st) =
Yt

αα

(
CFt (s; st)

α − 1

)1−α

(14)

Since CFt(s; s) is convex and α > 1, the profit function is a decreasing transformation of CFt and is
strictly concave.

3.2 Equilibrium and Steady State Characterization

I introduce the notation λ ≡ (λs, λu) for exposition, so that s = (λ, z). I also drop dependence
on the aggregate states to conserve on space. Given an initial distribution of firms over their
idiosyncratic states M0(s), initial capital holdings K0, initial skilled labor supply S0, a global interest
rate r̄, and an exogenous path {qkt} for capital prices, an equilibrium is

• an allocation {
Ct, Bt+1, Kt+1, St+1, Yt, {kt(s), ℓst(s), ℓut(s), yt(s)}s=(λ,z)

}
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• a sequence of technology choices {λt+1(s)}s=(λ,z),

• a distribution of firms over the idiosyncratic state space at each date {Mt(s)},

• and a set of prices {wst, wut, rt, rkt, {pt(s)}s}

such that the following conditions all hold.

• Consumption growth follows the consumption Euler equation 1.

• The rental rate for capital rkt and the world interest rate r̄ are related by equation 2.

• Firms’ input choices kt(s), ℓst(s), ℓut(s) and price and output choices pt(s), yt(s) satisfy the
focs 10, 11 and 12, and the pricing equation 13 given the law of motion for TFP 7 and
aggregates wst, wut, rt, rkt, Yt. Profits are given by 14.

• Firms’ choices of technology parameter λ′(s) are consistent with their values satisfying the
Bellman equation 8.

• The distribution of firms over the state space Mt(s) satisfies the law of motion

Mt+1
(
λ′, z′

)
= (1 − pE)

∫
1
{

gλt(s) = λ′}Pr
(
z′ | z

)
dMt (λ, z) (15)

+ pE M̄1
{

λEt = λ′} ∫ Pr
(
z′
)

dϕstat (z′)
where ϕstat (z′) is the value of the cumulative density associated with the stationary distri-
bution of the law of motion for TFP 7 and M̄ is the constant mass of intermediate good
firms.

• Labor markets clear, ∫
ℓst(s)dMt(s) = St (16)∫
ℓut(s)dMt(s) = H − St (17)

• The economy’s resource constraint is satisfied.

Bt+1 − (1 + r̄) Bt = Yt − Ct − qkt

(
KS

t+1 − (1 − δ)KS
t

)
(18)

− ∑
i=u,s

∫
κλ (gλit(s), λ)YtdMt(s)

I now characterize the steady state of the model which will constitute the starting point for the
transition dynamics of the model.
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Lemma 3. If r̄ > 0, κ0 > 0 are positive constants and qkt = qk, St = S for all t, then there exists a steady
state in which output Y and all factor prices are constant, wages ws, wu and the rental cost of capital rk are
constant, all firms operate technologies λi ≥ λ̂i(s), i = s, u where s = (ws, wu, rk, Y) and, recall that λ̂i(·)
is defined by wi

ψi(λ̂i(s))
= rk, and there is no investment in further technological adoption.

Proof. In appendix A.6.

4 Quantification of Model

In this section I describe how I quantify the model. I first outline the functional form assump-
tions I make for the task productivity schedules, which are the key objects which discipline the
substitutability between capital and labor of each type.

I follow Hubmer and Restrepo (2021) and set

ψu(x) = Bu

[
x

1−ρ−γu
γu − 1

] 1
1−ρ−γu

and ψs(x) = Bs

[
x

1−ρ−γs
γs − 1

] 1
1−ρ−γs

where 0 < ρ < 1 and ρ̄i = ρ + γi > 1 for both i = s, u. Recall that ρ is the elasticity of substitution
across task inputs in the task aggregators Gi. To simplify notation, introduce the notation ψki = 1
for capital’s productivity at tasks of type i, so that Ψki(λ

∗) = λ∗. I show in appendix section A.7
that

Ψi (λ
∗) =

∫ 1

λ∗
ψi(z)ρ−1dz = Bρ−1

i

[
1 − (λ∗)ai

]1/ai

where I define ai =
ρ̄i−1

γi
. We also have

wi

ψi
(
λ̂
) = rk =⇒ wi/Bi

rk
=

[
λ̂

1−ρ̄i
γi

i − 1

] 1
1−ρ̄i

=⇒ λ̂i =

((
wi/Bi

rk

)1−ρ̄i

+ 1

) γi
1−ρ̄i

The parameters to calibrate now are β, r̄, α, ρ, γs, γu, Bs, Bu, σ, µ, κ, pE. I set some of these parameters
externally, and jointly choose the remaining parameters to hit a set of moments for the initial steady
state of the model. First, I set the real interest rate to be 4% a year, consistent with its average value
over the sample period, and set β = 1/(1+ r̄) as noted above. I choose α = 7.7 to match an average
markup of 15% from Barkai (2020). I set pE = 6.2% to match the exit rate in Lee and Mukoyama
(2015). I choose parameters of the TFP process so that in the steady state the model produces an
aggregate sales share for the top 1.1% of all firms equal to 40%, following Autor et al. (2020).

Next, to calibrate ρ, I note that ρ is the elasticity of substitution across worker tasks for both skilled
and unskilled workers. I set ρ = 0.49, the value in Humlum (2021). To further validate the value I

choose for ρ, note that we have22 d log(k/ℓi)
d log(wi/rk)

∣∣∣∣
λs,λu fixed

= ρ. This implies that one interpretation of

22This follows immediately from the factor demand functions in equations 10, 11 and 12.
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ρ is that ρ maps into the short-run elasticity of substitution between capital and each labor type.
I confirm that my results are largely robust to values in the range of 0.4, corresponding to the
short-run plant level elasticity computed in Oberfield and Raval (2021), to 0.5. Beyond this value,
the model becomes numerically unstable. I am working on studying the model’s behavior for
values of ρ as high as 0.8, the aggregate value that Oberfeld and Raval obtain and close to the upper
bound for the consensus aggregate estimate in Knoblach et al. (2020).

The parameters µ, σ, γs, γu, κs, κu, Bs, Bu are chosen jointly to match a set of moments, which I now
enlist sequentially. While the value of each of these parameters affects the value of all of the
moments I define below, I provide some intuition for which moments are key to help determine
the values of the parameters. The value of µ is particularly informative for the steady-state labor
share, and I choose it to hit the initial steady state labor share of 62%. The parameters Bs, Bu are
chosen so that the model can match wages of skilled and unskilled workers in the 1980 steady state.
Note that these parameters are not separately identified from the level of the capital price qk, so I
normalize the capital price series to be 1 in the initial steady state.

To calibrate κs and κu separately would require estimates of technology adoption costs split by the
skill type that uses it. I could not find any such estimates, and therefore choose conservatively
to set κs = κu ≡ κ0. I choose κ0 so that along the transition path, the model’s implied share of
GDP spent on technology upgrading is 3% in 2000. To benchmark this, note that the share of GDP
spent on research and development on GDP is about 2.5%, the share of GDP spent on information
processing equipment and software is about 4.5% of GDP and the share of GDP spent on software
alone is about 1.5% of GDP at these dates.

To calibrate γi, I target estimates of the medium-run substitutability between capital and labor. I
conduct the following experiment. For a given pair of values of (γs, γu), I solve for a steady state in
which all firms operate the same technologies λ̂SS

s , λ̂SS
u . I then simulate the behavior of one firm f

hit by an unexpected 1% shock to that specific firm’s cost of capital, with all other firms remaining
unaffected. I assume that the firm behaves as if this shock is permanent, and that the price of
capital for this firm will remain at this level forever. The firm therefore is surprised by learning that
the paths of the aggregates that it must take into account are now

(
wSS

s , wSS
u , 0.99rSS

k , YSS). That
is, it perceives that except the lower rental cost of capital it faces, all other prices are unchanged
forever23.

I then solve for the firm’s choices of its own states (λst, λut) at dates going forward, by iterating
on the firm’s policy functions gλt(s). With constant factor prices forever, the lower rk implies
that the firm chooses to raise the capital feasibility cutoffs λs, λu. However, due to the cost of
raising the cutoffs, the firm will in general not immediately raise the cutoff to the newly optimal
cutoffs λ̂′

s > λ̂s, λ̂u > λ̂u, but will do so slowly as it receives positive productivity shocks. As
it raises the cutoffs, its factor demands will change, leading to a new path for ℓs, ℓu, k for that
firm. I store these paths. I repeat this exercise for each point in the state space, and compute

23This experiment is similar to the one used by Humlum (2021) to study the impact of robot adoption.
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Parameter Value Source/Target

Elast. Subst.
across int. goods

α 7.67 Agg Markup 15% (Barkai 2020)

Production
Function

ρ 0.49 Humlum (2019)

σ 2.75 d log(ℓs/ℓu)
d log(MPℓ/MPu)

= 0.75

µ 0.15 1980 labor share
ρz 0.95 Estd. TFP Persistence
σz 0.105 Top 1% firms have 40% sales in 1982

Comp. Adv.
Schedules

γs, γu 0.76,1.14 Estimates in Berlingieri et al (2022)
Bs 4.41

ws, wu in 1980Bu 502.02

Exit/Entry Rate pE 6.2% Lee and Mukoyama (2015)

Adoption Costs κ0 2.3e3 Adoption costs 3% of GDP in 2000

Table 1: Parameter values for the model.

the statistic ε̂ i(s) =
(

wSS
s ℓSS

s (s)+wSS
u ℓSS

u (s)+rSS
k kSS(s)

rSS
k kSS(s)

)
∆0→5 log(ℓi(s))

∆0→5 log qk
for each point s in the state space. I

then calculate the mean value of this elasticity over all firms in the economy using the initial
stationary distribution as weights, and ask the model to match the estimates of the statistics σle, σhe

in Berlingieri et al. (2022) which are defined as the analogues of my statistics24. I obtain γs = 0.79
and γu = 1.1, which are consistent with greater substitutability between capital and unskilled labor
in the medium run than between capital and skilled labor.

Finally, given all the remaining parameters, σ is particularly informative about the elasticity of
substitution between skilled labor and unskilled labor. I choose σ to match an initial steady-state
elasticity of substitution between skilled and unskilled labor, d log(ℓs/ℓu)

d log(MPℓ/MPu)
= 0.75, the midpoint of

the range of estimates reported by25 Havranek et al. (2020).

24Berlingieri et al. (2022) construct an instrument capturing unanticipated variation in the price of capital faced by a
firm using bilateral exchange rate shocks and the fact that different firms import capital goods from different sets of
countries to estimate the statistic corresponding to ε̂i at the firm level.

25Standard estimates of the elasticity of substitution between skilled labor and unskilled labor exploit time series
variation in the shares of skilled labor and unskilled labor in a setting abstracting from capital accumulation, or fail to
allow for flexible patterns of substitution between capital and either labor type. Virtually without exception, the notion of
skilled-unskilled labor substitution these methods capture reflects movements along an isoquant, identified by plausibly
exogenous variation in supplies of labor (note that in the standard Katz and Murphy (1992) approach to identifying the
elasticity, identification is only possible because they assume that labor supply is exogenous and that the production
function imposes a constant elasticity of substitution between skilled labor and unskilled labor.). Through the lens of my
model, this identifying variation is confounded by two forces. First, in my model, the elasticity of substitution between
capital and labor of type i differs across labor types, which means that the elasticity of substitution between skilled
and unskilled labor depends on capital accumulation over time. Second, endogenous technology adoption implies that
regressions based on time-series variation in aggregates will confound the effects of movement along an isoquant and
shifts of isoquants when measuring the change in demand.
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5 Mechanism

In this section I provide some intuition for the mechanism underlying the model’s behavior over
time. This intuition is largely captured by noting the first order condition of an intermediate good
firm which is constrained - that is, for a firm with λi ≤ λ̂i (wi/rk). The first order condition for
such a firm’s choice of λ′

i is

κiYt =
1 − pE

1 + r̄

[
∂π̃t+1 (λ

′
s, λ′

u)

∂λit+1
E
((

z′
)α−1 | z

)
+ κiYt+1

]
where recall that π̃ (λ) = π (λ, 1), i.e. profits for a firm with unit productivity. The left side reflects
the constant marginal costs of raising λi, while the right side reflects the two marginal benefits.

The first marginal benefit is that a higher λi raises profits for any constrained firm by reducing the
cost of its relative intermediate good. It is easy to show that

∂π̃t+1

∂λit+1
=

Y
αα

(1 − α)

(α − 1)1−α
C̃Ft+1 (·)−α

︸ ︷︷ ︸
∂π̃

∂C̃F
<0

∂C̃Ft+1 (·)
∂λit+1

= − Y
αα

C̃Ft+1 (λ, z)σ−α

(α − 1)−α︸ ︷︷ ︸
<0

µiPGit+1(·)ρ−σ

1 − ρ

[
r1−ρ

kt+1 −
(

wit+1

ψi (λi)

)1−ρ
]

︸ ︷︷ ︸
≤0

The first term in the underbrace is negative because α > 1 (recall α is the elasticity of substitution
across varieties) and the second underbrace is negative as long as the firm is choosing a value
λit+1 < λ̂it+1. Note that this is true irrespective of whether ρ > 1 or ρ < 1.

The second marginal benefit is that a higher technology parameter installed tomorrow reduces the
cost associated with any future choice of an even higher technology parameter, by reducing the gap
between the technology installed tomorrow and the higher technology parameter to be installed in
the future.

I now explain how the model generates a shift in the direction of technology adoption. To build
intuition, it is useful to consider the cost of performing a task using unskilled workers and the cost
of performing it using skilled workers. Recall that these costs are given by

χi (λi, wi) =
wi

ψi (λi)
, i = s, u

In the initial steady state, all firms operate the same technology with λi = λ̂i (wi/rk). Starting
from this steady state, given the form for ψi (·) and the calibrated values for Bi, γi, it is easy to
show that the curve χu (·) is steeper than26 the curve χs (·)

(
i.e.

∣∣∣ ∂χu
∂λu

∣∣∣ > ∣∣∣ ∂χs
∂λs

∣∣∣). Thus, at the initial

26This steeper slope reflects a combination of two forces. First, the pure labor augmenting term Bu (which is fixed over
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equilibrium, a given increase in λs generates a smaller drop in total costs than an equivalent increase
in λu. Since the marginal cost of raising λi is the same for both types of labor i = s, u, at the margin,
constrained firms will tend to shift λu out by more than λs. Along the initial part of the transition
path, this force contributes to slower growth in the relative demand for unskilled labor, relative
to skilled labor. This faster increase in skilled labor demand manifests as an increase in the skill
premium. This increase is driven by a rapid increase in wages of skilled labor, relative to unskilled
labor. One interpretation of this is that firms initially see larger cost declines from the introduction
of industrial robots which displace unskilled workers, than they do by introducing software or
other technologies which displace skilled workers. This is in line with what the literature has found
for the period 1980-2000.

As the wages of skilled labor rise, however, two things happen. First, the curve χs (λs, ws) becomes
steeper since its numerator grows, implying a greater reduction in costs from a marginal increase in
λs. Second, since 1

ψu(xu)
is convex in xu, the marginal decline in unit costs from a marginal increase

in λu falls. This weakens the incentives to raise λu. Together, these forces imply that the relative
incentives to displace skilled labor by raising λs increase over time, compared to the incentives
to raise λu. Two forces prevent firms from fully closing the gap between λs and λ̂s immediately.
First, there is the marginal cost of raising λs, which is κsY. Second, since the cost of using skilled
labor is also convex in λs, raising λs reduces the cost savings from marginal increases in λs and
therefore -all else equal- reduces the incentives to further raise λs. The model thus produces a
gradual transition from technology adoption focused on displacing unskilled workers to displacing
skilled workers. Note that this argument does not rely on the specific functional form assumptions I
make for ψi (·) - it only requires that the function satisfy the assumptions listed below the definition
of the production function 6 and that the curve χu (x) be steeper than χs (x) at all points x ∈ [0, 1].
However, the parametrization I use has the convenient property that it requires only the two
parameters γs, γu to be disciplined.

While the argument above conveys the key intuition of my model, there are also interaction effects
that complicate firms’ adoption choices. To understand these, consider a rise in λs for a constrained
firm. All else equal, such an increase will reduce the cost of the skilled intermediate good Gs. I
estimate that Gs and Gu are gross substitutes, which implies that a fall in the price of Gs will reduce
the firm’s input of the unskilled intermediate good Gu. This, in turn, reduces the firm’s incentives
to raise λu and is a force that further pushes in the direction of raising λs by more than λu. The
force works in the other direction as well: a fall in λu induces firms to invest less in raising λs as
well. In the initial period, these two forces offset each other. As the skill premium rises, however,
the the former dominates and the incentives to raise λu decline by relatively more.

Finally, I explain the role of size heterogeneity in my model. While not directly a factor in the
mechanism above, heterogeneity in firm sizes induced by the productivity shocks allows the model

time) is larger than Bs. Second, γs < γu. Note that the levels of Bu and Bs cannot be independently identified from the
level of qk, so one interpretation of the higher value of Bu is that the cost of capital used to perform unskilled tasks is
lower by a constant factor than the cost of capital used to perform skilled tasks.
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to capture the staggered adoption of technologies, and also allows the model to capture a key
feature of the data: the central role of reallocation of value added towards firms with low labor
shares.

Lemma 4. All else equal, consider two constrained firms with states s1 = (λ, z1) and s2 = (λ, z2) where
z2 > z1. Then the policy functions for next period’s choice of the capital feasibility cutoffs satisfy, for both
i = s, u, λ′

i (s1) ≤ λ′
i (s2).

Proof. See proof of claim 5 in section A.6.

Lemma 4 shows that firms with higher TFP will be more likely to adopt new technologies. The
mechanism by which this translates to larger firms having lower labor shares is analogous to the
one discussed in Zolas et al. (2020) and modeled in Hubmer and Restrepo (2021): with a constant
fixed cost of raising the capital feasibility cutoffs by a unit, constrained firms with higher TFP have
more to gain from a marginal increase in their cutoffs. This is because their higher productivity will
persist from date t, when they make their choice, to date t + 1, when they will use the technology
they are investing in adopting today. All else equal, higher productivity tomorrow equates to
higher marginal increases in profits tomorrow from a marginal change in the cutoff parameters
made today. However, with α > 1, these higher TFP firms are ceteris paribus also larger firms, with
larger factor input demands and intermediate good sales. Thus, in the model, larger firms are the
first to adopt newer technologies. Since these new technologies are more capital intensive, their
labor shares are lower as well.

6 Results

In this section, I do two things. First, in section 6.1, I validate my model by showing that it is
quantitatively consistent with several non-targeted moments, including output elasticities and
changes in establishment-level skilled labor to unskilled labor ratios. I also show that the model
generates the decline in the labor share via reallocation of value added toward large firms, and
that the median firm’s labor share actually rises along the transition path, which is consistent with
recent evidence on the decline of the labor share being driven by reallocation forces. I show that the
model is broadly consistent with the rising concentration of sales and employment in large firms.

Second, I perform the main transition experiment I consider, which works as follows. I assume
that the economy is in a steady state of the form described above in 1980. I assume that in 1980,
agents learn of a continuous decline in the price of capital from its 1980 value to its 2019 value and
also learn of a persistent increase in the relative supply of skilled labor between these periods. I
take the paths for these two time series from the data, HP-filtering both to remove the effects of
business-cycle fluctuations in the time series. I assume that after 2020, the growth rates of both
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series decline (in absolute value) linearly from their 2019 value to 0 over the next 10 years. After
2030, both series are constant forever27.

Figure 8: Driving exogenous processes in the model. In both plots the solid vertical line indicates 2019, the final date at
which the series takes on the (HP-filtered) value from the data. After 2019, the growth rates of the two series decline
to zero in absolute value. LEFT: Relative price of capital goods to consumption goods from DiCecio (2009). RIGHT:
Relative supply of skilled labor, constructed using the CPS as the ratio of hours worked by skilled workers to hours
worked by unskilled workers.

I compute the perfect foresight transition of the economy in response to the new information thus
obtained by economic agents. I solve for the initial steady state in 1980 and the final steady state
using the terminal values of the exogenous aggregate time series for the price of capital qkt and skill
supplies St, Ut. I then solve for the paths of wages wst, wut and output Yt such that labor markets
clear at each date, consistent with the definition of the dynamic equilibrium above. I compute the
model implied equivalent of the skill premium Skillpremt = log wst − log wut and the labor share
in value added28 lshrt =

wstSt+wutUt
Yt

.

6.1 Model Validation on Non-Targeted Moments

I validate the model by checking its fit on a range of non-targeted moments.

First, I note that the model-implied output elasticities as of 1980 with respect to each factor of
production are consistent with estimated value-added production functions. In particular, I estimate
the output elasticities with respect to each factor, ωY

f = d log y
d log f for f = ℓs, ℓu, k at the steady state.

Note that in the steady state, all firms choose the same value of λ, and the elasticity is invariant to
the productivity of the firm up to a constant. I compute these elasticities for ℓs, ℓu, k to be 0.29, 0.41

27My results are robust to choosing different horizons for the decline in the growth rates between 20 and 40 years. It is
important to allow for this gradual adjustment since without this, the kink in the path for the relative price of capital
produces a discontinuous jump in the rental rate of capital for one period which affects firms’ incentives to produce
output at all prior dates.

28In my model, the labor share in value added is proportional to the labor share in costs since markups are constant.
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and 0.29 respectively, consistent with the values in Demirer (2020)and in Gandhi et al. (2020)2930.

Second, the model performs well at matching changes in the median of the ratio of skilled to
unskilled labor input, ℓst(s)/ℓut(s). Even though the aggregate ratio St/Ut is an input to the model,
this aggregate ratio is consistent with many different underlying distributions of this ratio across
firms, which may have very different median values. The ability of the model to be consistent with
the change in the median is therefore a success of the model.

To the best of my knowledge, publicly available data on firm inputs of skilled and unskilled labor
are not available, and I provide one estimate of the distribution of this ratio. To construct it, I draw
on data from the Computer Intelligence Technology Database, maintained by Aberdeen/Harte-
Hanks, which contain establishment level information on shares of white collar and blue collar
employees. I discuss this dataset further in section 7.1. I impute the number of skilled and unskilled
workers by combining the Harte-Hanks data with the CPS ASEC as follows. In the CPS, I assign
occupations to white or blue-collar status based on definitions used by the BLS: White-collar
occupations include Professional, Managerial and Technical workers, some Sales occupations, and
Office Administrative Support Occupations, and blue-collar occupations are the complement. I
then use the CPS to calculate, for industry k in year t, the object

Pr (Skilled | WhiteCollar, kt) = ∑i ωi1 (i ∈ Skilledt
⋂

WhiteCollart)

∑i ωi1 (i ∈ WhiteCollart)

where ωi is individual i’s demographic weight, the sets Skilledt, WhiteCollart indicate individ-
uals who are skilled and who work in white-collar jobs respectively. I repeat this for other
skilled/unskilled and blue/white-collar combinations. For establishment j in industry k at date t, I
impute

Nskilled,jkt = NWhiteC,jkt Pr (Skilled | WhiteC, kt) + NBlueC,jkt × Pr (Skilled | BlueC, kt)

and similarly for other skilled/unskilled and blue/white collar combinations. I choose to do this
in the years 1998 and 2008, a 10-year period, because I have sufficiently many observations to
calculate these objects in these years31.

Next, I show that the model is consistent with the findings of Autor et al. (2020) and Kehrig and
Vincent (2021), in that the labor share decline is driven by a reallocation of value added toward
large firms. Thus, the model endogenously produces “superstar” firms with large shares of total

29Demirer (2020) estimates that the average capital elasticity across the manufacturing industries he studies is 0.25, as
compared to my estimate of 0.29. He also estimates that larger firms have higher capital elasticities. This is not true in
the steady state of my model, since factor ratios are invariant to heterogeneity in firm TFP z, which is the only dimension
of heterogeneity that exists in the steady state. However, it is true along the transition path, since larger firms are more
likely to adopt technologies that are more skill intensive.

30Gandhi et al. (2020) estimate gross-output production functions and compute the average ratio of the capital to the
labor elasticity to be 0.4 across a variety of specifications and datasets. I compute this to be 0.42.

31Post 2010, data on the blue and white collar employment at the establishment level is no longer available in my
extract of the data.
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Moment Data Model

P50
(

ℓs,1998
ℓu,1998

)
0.96 0.89

P50
(

ℓs,2008
ℓu,2008

)
1.1 1.14

Table 2: Data from Harte-Hanks CiTDB. Skilled and Unskilled labor imputed by allocating reported white collar and
blue collar employment to skilled and unskilled categories proportionate to their respective ratios in CPS industry-year
bins.

sales and low labor shares. In line with the findings of Kehrig and Vincent, superstar status is
transient, since TFP is mean reverting. While the aggregate share falls by about 1.5 percentage
between 1982 and 2012, the median labor share rises by about 3 percentage points. Kehrig and
Vincent (2021) show that for the manufacturing sector, the median firm’s labor share rose by about 3
percentage points, indicating that the model is consistent with the differential trends in the median
and the aggregate labor share, and also indicating that the model’s declining labor share is indeed
driven by reallocation of value added toward low labor share firms.

Finally, I evaluate the model’s implications for concentration of sales. In the model, due to the fixed
cost, only relatively large firms adopt new technologies. The reduction in costs that comes from
technology adoption allows these firms to charge lower prices and therefore acquire larger sales,
implying that the model naturally features a force towards concentration of sales in large firms.
In the model, the implied 4-firm concentration ratio for sales, defined as the fraction of total sales
accounted for by the top 4 firms, rises from about 40% in 1982 to 47% in 2012. This increase of 7
percentage points is somewhat larger than the 5.3% found by Barkai (2020). One possible reason
why the model predicts a larger sales share increase for the largest firms than in the data is because
it features constant markups, whereas there is evidence that larger firms enjoy higher markups and
therefore more muted increases in their sales shares as costs fall. Extending my model to include a
variable elasticity of substitution structure for aggregate demand in order to account for this fact is
an important extension I leave to future work.

6.2 The skill premium and the labor share

Figure 9 plots the model’s performance at matching the behavior of the skill premium and the
labor share. The model’s fit on both series is excellent, given that the calibration only targets the
initial values of the two series. Towards the end of the period in 2019, the model over-predicts the
data-implied level of the skill premium by about 3 percentage points (or 6% of the value of the
series). The initial increase in the skill premium is driven by a combination of technical change
being relatively directed at unskilled labor over this period. As the skill premium rises, firms switch
toward displacing relatively skilled workers.

The model overpredicts the decline in the labor share by about 2 percentage points at the end of the
period. This is driven by the model’s prediction of a strong decline in the labor share after 2015. By
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contrast, in the data, the labor share demonstrates a recovery post 2017. The period 2016-2019 was
a period of rapidly rising wages at all points in the wage distribution, driven by a combination
of rapid increases in labor productivity and a particularly tight labor market (Pinheiro and Yang,
2020). Incorporating a richer model of the labor market and allowing for business cycle dynamics
in aggregate productivity could improve the model’s ability to match these trends. Overall, the
model’s abiity to rationalize the dynamics of the labor share post-2000 is excellent.

Figure 10 shows that the decline in the aggregate labor share is indeed driven by a slowing trend in
the skilled share at the end of the time period being studied. While the BEA provides estimates of
the labor share, it does not separately report the skilled and unskilled labor shares of value added.
To construct these estimates, I first estimate the share of total labor income that accrues to skilled
labor and the share accruing to unskilled labor using the CPS. I then construct the share of skilled
labor income in value added as the product of the total labor share and the skilled labor share of
labor income. The model does an excellent job rationalizing the decline in the share of unskilled
labor and the share of skilled labor, even though the dynamics of these series were never targeted
in the calibration.

Figure 9: Model’s fit for the skill premium (left) and the labor share of value added (right). Data on the labor share are
for the business sector from the BEA-BLS Integrated National Income accounts. The model’s implied share for labor in
value added is given by the ratio wsS+wu(H−S)

Y .
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Figure 10: The skilled and unskilled labor share of value added. Data: BEA-BLS Integrated National Accounts and
CPS ASEC. To construct the data measures, I first construct composition-adjusted average wages and labor supply
weights for each of five education groups, following Autor (2019). I use these to construct a measure of the total wage
bill, defined as the sum over the five groups of the product of average wages within each group and its labor supply
weight. Next, I construct the skilled labor share of labor income as the share of the wages of the groups of workers with at
least a college degree in the total wage bill. I assign the group with some college education half to the skilled labor share
and half to the unskilled labor share. I obtain the skilled labor share of value added by multiplying the skilled labor
share of labor income with the aggregate labor share time series for the non-farm business sector, which is the measure
of the labor share I use throughout this paper. The model analogue of this object is just the ratio witℓit

Yt
for i = u, s.

6.3 Counterfactual behavior without Technology Choices

Figure 11 plots the model’s performance at matching the behavior of the skill premium and the
labor share along with the counterfactual, in which firms are forced to use the same technologies
over the entire period. Towards the end of the period in 2019, the counterfactual model over-
predicts the data-implied level of the skill premium by about 8 percentage points (or about 40% of
the value of the series), and the decline in the labor share by 10 percentage points. Since the model’s
calibration was not targeted to match the dynamics of the skill premium, one way to interpret this
counterfactual is that the model mechanism accounts for over 60% of the slowdown of the skill
premium.

The counterfactual underpredicts the decline in the unskilled share and fails to get the slowdown in
the growth of the skilled labor share. As a result, it predicts an increase in the labor share continuing
throughout the 2000s. This is intuitive - the only force behind skilled labor demand growth in the
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counterfactual model is the effect of capital-skill complementarity. The declining relative price of
capital goods thus translates to an increasing skilled labor share.

Figure 11: Model’s fit for the skill premium (left) and the labor share of value added (right), vs a counterfactual with
no technical change. Data on the labor share are for the business sector from the BEA-BLS Integrated National Income
accounts. The model’s implied share for labor in value added is given by the ratio wsS+wu(H−S)

Y .

Figure 12 also illustrates that the slowdown in the demand for skilled workers is crucial to explain
the behavior of the labor share. Prior to 2000, the rising share of skilled workers - driven by
increases in the relative demand for skilled workers - was sufficient to offset the decline in the
share of unskilled workers, leading to a roughly stable labor share. Post 2000, the slowdown in
skilled labor’s share meant this offsetting force was weaker, manifesting as a decline in the share of
skilled workers. That the model can match the dynamics of skilled and unskilled shares separately
is a success for the model that to the best of my knowledge has not been achieved by alternative
models in the literature.

7 Micro-Evidence on Technology Adoption

In this section, I provide some microeconomic evidence for my key mechanism: that a rising skill
premium induces technology adoption that tends to displace relatively skilled workers. First, I
conduct a case study using accountants, and show that rising exposure to dedicated accounting
software reduces the rate of growth of wages for accountants. Second, I show that over time, newer
technologies are increasingly associated with the kinds of tasks that relatively skilled workers
perform.

7.1 A case study: Accountants

Accountants work in a prototypically routine cognitive occupation, and are on average highly
skilled. And yet, for as long as accountants have existed, commentators have regularly worried
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Figure 12: The skilled and unskilled labor share of value added. Data: BEA-BLS Integrated National Accounts and
CPS ASEC. To construct the data measures, I first construct composition-adjusted average wages and labor supply
weights for each of five education groups, following Autor (2019). I use these to construct a measure of total labor
earnings, defined as the sum over the five groups of the product of average hourly earnings within each group and its
labor supply weight. Next, I construct the skilled labor share of labor income as the share of the hourly earnings of the
groups of workers with at least a college degree in the total wage bill. I assign the group with some college education
half to the skilled labor share and half to the unskilled labor share. I obtain the skilled labor share of value added by
multiplying the skilled labor share of labor income with the aggregate labor share time series for the non-farm business
sector, which is the measure of the labor share I use throughout this paper. The model analogue of this object is just the
ratio witℓit

Yt
for i = u, s.

that accountants are highly exposed to displacement by modern technologies such as AI 32. These
concerns echo the ones that accompanied the widespread deployment of commercial accounting
software during the late 1990s, partly in the tax preparation industry33. The overall thrust of
this discussion is a mixture of optimism regarding the automation of routine tasks performed by
accountants combined with a dismissal of the possibility that accounting software would displace
workers. McCormally (1991) provides a description of some of these software platforms and their
relative costs.

The automation of the tedious processes that underlie accounting for large and complex business
concerns has provided fertile ground for innovative activity since the development of computing
technologies began. In 1888, William Burroughs patented the first commercially successful cal-

32See, for instance, Reading et al. (2015), Frey and Osborne (2017), Sheedy (2017), Henderson (2018) and Roose (2021).
33See, for instance, Zarowin (1994), Knight-Ridder/Tribune (1997), Stipe (1997), Kirkpatrick (1998) and Lee (2000).
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culator, the Burrough’s calculating machine. The patent34 for the calculator characterizes it as “...
a new and useful Improvement[s] in Mechanical Accountants." Burrough’s frustration with the
calculations he was required to perform reviewing bank ledgers was an important impetus for his
invention (The Franklin Institute, 2016). By 1907, businesses used punch-card based computing
machines for accounting purposes, and by the 1960s, electronic computers such as the UNIVAC
were installed at major corporations for processing payroll and related functions.

Software dedicated to accounting functions accelerated particularly in the late 1970s with the devel-
opment of the spreadsheet, a then revolutionary technology that could allow financial modeling
right at an accountant’s desk. The PC-bound spreadsheet application, first commercialized by Visi-
Calc and today exemplified by the likes of Microsoft’s Excel and Google’s Sheets applications, was
a key driver of personal computer adoption in businesses. As late as 1983, the personal computer,
then exemplified by the IBM PC, running an operating system called PC DOS licensed from the
then fledgling company Microsoft, was widely dismissed as an expensive tool for hobbyists, and
most computer users associated real work with mainframe computers. Analysts seeking specific
information on a company would send a request to the mainframe terminal, receive a pre-formatted
report within days or weeks depending on their priority, and then search through this report for
the specific information they sought. Much of company accounting was performed by hand or by
inputting data afresh each time in a predetermined sequence as required by the programs on the
mainframe (Palatto, 2013).

The spreadsheet enabled both the storage of different kinds of data in one location and the inte-
gration of this data, and performed all necessary calculations on the personal computer that the
analyst was using. Further, spreadsheet users could develop their own programs, called macros,
which allowed them to adapt the data presentation and analysis power of spreadsheet programs
for their own purposes. The key difference between spreadsheet software like VisiCalc and existing
business analytics software was just how easy it was for novices to use them. Ben Rosen, who
would later found Lotus, raved on the launch of VisiCalc that “... VisiCalc comes alive visually. In
minutes, people who have never used a computer are writing and using programs. ..." The success
of VisiCalc led to the curious case of individual business owners beginning to buy PCs for the sole
purpose of running VisiCalc. This success also led to the development of multiple competitors.
The most successful of these was Lotus 1-2-3, a program which almost single-handedly drove the
success of the IBM PC in modern businesses. Lotus would retain its dominance until the 1990s,
when Microsoft’s Excel, a spreadsheet program with a graphical user interface, began gaining
popularity.

As Excel and Lotus diffused through the US economy, the aggregate demand for accountants
began to show cracks. Between 1980 and 2000, the mean annual growth rate of employment for
accountants was about 1.7%, outpacing the labor force’s 1.4% growth. However, post 2000, mean
annual growth in accountant employment was about 0.3%, slower than the labor force’s 0.6% per

34US Patent US388116A
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year. This slowdown in employment coincided with a slowdown in growth in the wages of skilled
accountants, who had enjoyed substantial gains between 1990 and 2000. Figure 13 illustrates this.

Figure 13: Average hourly labor earnings of skilled and unskilled accountants. The mean hourly
earnings of skilled accountants is constructed by taking a weighted average of the mean residualized
hourly earnings of accountants with at least 16 years of education and assigning accountants with
between 12 and 16 years of education equally to the skilled and unskilled groups, following Autor
(2015). All data from the CPS ASEC.

In this section, I show that the deployment of accounting software was indeed higher in areas where
accountants were more expensive to hire, and was associated with slower subsequent growth in
accountant wages.

7.1.1 Data

Data on the wages of accountants comes from Census 5% samples for 1990, 2000 and 2010 from
IPUMS (Ruggles et al., 2022). Accountants are defined as members of the consistent classification
code occ=23. I residualize these wages on race, sex, age and experience categories within each year
following Autor (2019). I then average over all accountants within a commuting zone using labor
supply weights, defined as the product of the hours worked by an accountant and the individual
demographic weight. More details on the data cleaning procedure can be found in appendix A.3.

Data on the diffusion of accounting software come from the Computer Intelligence Technology
Database (CiTDB), maintained by Harte-Hanks and later by Aberdeen. The database contains
establishment-level information on whether a given technology has been adopted, along with an
address for the establishment and industry identifiers for firms. A technology in the dataset is
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a combination of a manufacturer and a specific make and model (for instance, “Microsoft Excel”
and “Microsoft Word” are distinct products, but some firms report using “Microsoft Office”.).
In addition, it provides information regarding the use of the technology at the establishment, a
description of the technology and product category information for each technology. This richness
makes the dataset ideal for the study of technology adoption at a more granular level than has
previously been explored. The CiTDB dataset has been widely used to track the diffusion of
computing technologies and the internet owing to its quality35, which owes to the fact that the
database is used commercially by marketing departments of large producers and suppliers of
IT and related products to identify sales opportunities. The extracts of the data I have access
to nonetheless require extensive cleaning to correct for errors in the geographic and industrial
classification data, the process for which I describe in appendix A.3.

After cleaning, I construct establishment-level weights which ensure the representativeness of the
data with respect to the number of establishments by geography and industry as documented by
the County Business Practices. That is, letting NCBP

cit be the number of establishments in county c,
2-digit industry i and year t in the County Business Practices dataset and letting NHH

cit be the same
in the Harte-Hanks dataset, I weight all establishments j in county c(j), 2-digit industry i(j) and
year t by the weight

ωjt =
NCBP

c(j)i(j)t

NHH
c(j)i(j)t

I identify accounting software using a decision rule that uses both Harte-Hanks’ own classification
of technologies and the metadata that companies provide on the uses of technologies at their
companies (see appendix A.3 for details). For each establishment j, I define an indicator for whether
that establishment has adopted accounting software at or before date t

Ijt =

1 j ever used Accounting software at datet′ ≤ t

0 otherwise

I then define the fraction of establishments in commuting zone c which have adopted accounting
technologies by date t,

FracAdoptACCT
ct =

∑j∈c Ijtωjt

Nct

where ωjt is the weight associated with establishment j.

I define adoption as an indicator variable for whether or not an establishment uses a given tech-
nology. Note that this measure fails to capture the intensity with which the software is used at a

35Papers using subsets of the Harte-Hanks dataset to study the diffusion of computing technologies and ICT include
Brynjolfsson and Hitt (2000), Bresnahan et al. (2002), Brynjolfsson and Hitt (2003), Forman et al. (2008), Forman et
al. (2012), Bloom et al. (2016) and Hershbein and Kahn (2018). To the best of my knowledge, this is the first time the
data have been used in economics to study the impacts of the adoption of an occupation-specific technology on the
employment and wages of that occupation.
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given establishment: regrettably, my extract of the CiTDB data does not contain information on the
“quantity” of software36 after 2008.

7.1.2 Higher Accountant wages and the Adoption of Accounting Software

I first argue that commuting zones with relatively high wages for skilled accountants and relatively
high skill premia among accounting workers indeed adopted accounting software first. I show this
by running the regression

∆t−10→tFracAdoptACCT
ct = β0 + β1 log ws,ct−10 + δs + xct−10 + εct

where ∆t−10→tFracAdoptACCT
ct is the 10-year change in the fraction of establishments in a given

commuting zone which have adopted accounting software. This regression uses variation across
commuting zones in the relative price of skilled accountants to explain changes in the share of firms
adopting technologies. I also run the same regression using variation in the accountant-specific skill
premium. My results are very similar in the two specifications, and show that commuting zones
with initially high levels of accountant wages have stronger growth in the adoption of accounting
software.

The identifying assumption for the OLS specification is that conditional on covariates, within-state
variation in the relative wages of skilled accountants is orthogonal to any other forces that might
affect the adoption of technologies. There are a number of reasons this might not be a reasonable
assumption. For instance, commuting zones might vary in their extent of specialization in the FIRE
industry, an early adopted of computer technologies. Counties intensive in computer usage might
simultaneously adopt more of all types of software, including accounting software, and rely more
on accounting professionals, driving up their real wages.

7.1.3 IV Strategy: the 150-Hour Rule

When studying the impact of high wages on technology adoption using panel variation across labor
markets, one runs into severe endogeneity issues. For instance, one simple source of endogeneity
could be time-varying regional productivity for skilled workers relative to unskilled workers,
which can simultaneously raise the returns to adoption and the local relative demand for skilled
labor.

To get around this, I exploit the staggered implementation of the 150-hour rule, which raised the
minimum number of semester-hours of college work accountants were required to complete before
obtaining CPA licensure, a key qualification for accountants. The first state to implement the rule

36Ideally, I would have liked to have known the share of PCs at the establishment on which the given software was
being used, for instance.
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Effect on change in share of adopting firms ∆t−10→tFracAdoptACCT
ct

OLS IV

log ws,ct−10 0.167*** 1.798**
(0.055) (0.749)

log
(

ws,ct−10
wu,ct−10

)
0.152*** 1.975**
(0.056) (0.830)

State FE Y Y
Race Comp. Controls Y Y
Age Controls Y Y
Income, Industry Controls Y Y

N 1,386 1,386

Table 3: An observation is a commuting zone-year pair. Observations weighted by commuting zone population in
initial period. Data on wages from Census 1990 2000, 2010. Data on rising adoption of Accounting technologies from
Computer Intelligence Technology Database (CiTDB). Race controls include indicators for share of Black and share
of other racial groups (with whites as the base category). Age controls include indicators for fraction of population
below 18 and fraction above 65. Income, Industry controls include per capita income, employment-population ratio,
share employed in manufacturing and share employed in services industries. All regressions include state fixed effects.
Standard errors clustered at the commuting zone level in parentheses. *, **, *** indicate statistical significance at 0.1, 0.05
and 0.01% respectively.

was Florida, in 1983, and the final state to adopt the rule was Colorado (effective in 2015). The 150
hour rule is a substantial entry barrier, since it implies the equivalent of an extra year of college
for prospective accountants. Barrios (2022) exploits the staggered implementation of the rule to
show that the use of the rule reduced the number of first-time test takers by up to 15%, with
virtually no impact on the relative quality of candidates measured using indicators derived from
their labor market outcomes. Meehan and Stephenson (2020) find that implementation of the rule
raises the wages of accountants in adopting states by about 9% on impact relative to accountants in
non-adopting states.

I now provide some more background on the 150-hour rule. The rule was intended to raise
occupational licensing requirements for accountants, an occupation that is already highly regulated.
As early as 1956, the Commission on Standards and Experience for Certified Public Accountants
produced a report favoring the requirement of a graduate degree for accountants. At this time, this
requirement was drastic - only three jurisdictions required accountants to have even graduated
from college (NASBA, 2008).

Currently, the key license accountants require in order to be certified and be eligible to audit financial
statements and check whether they are complying with the Generally Accepted Accounting
Principles (GAAP) governing US disclosure requirements is the CPA exam, set by the American
Institute of Certified Public Accountants. Even applying to write the exam traditionally required
candidates to complete 120 semester-hours of study, usually completed over four years.
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The savings and loan crisis of the 1980s increased scrutiny on the accounting profession, which
came under fire for improperly certifying financial statements of ostensibly distressed institutions.
In response to this, the AICPA implemented reforms, in the name of “self-regulation." One of
these reforms was a proposed rule to require that applicants for the exam be required to undertake
150 hours of study, a 30 semester-hour increase, amounting to an extra year of coursework. The
AICPA claimed that this extra year of study was necessary in response to the rising complexity of
accounting regulation and auditing practices, and that some graduate school was “... an excellent
way to more fully develop skills such as communication, presentation, and interpersonal relations,
and to integrate them with the technical knowledge being acquired" (AICPA, 2003). It is interesting
to note that the National Association of State Boards of Accounting admitted in 2008 that “ ...
Entry-level requirements into the accounting profession, i.e., minimum competence, were not fully
addressed in the literature which supported the 150-hour educational requirement. ..." (NASBA,
2008), suggesting that the true reasons for the implementation of the rule were less benign, and
intended simply to restrict the supply of skilled accountants.

Irregardless, the rule passed with 83% of the vote at the AICPA’s 1988 annual meeting, and the
AICPA required the rule to be enacted by 2000 (NASBA, 2008). Barrios (2022) shows that while
some states, notably Florida, were early adopters of the rule, most states waited until after 2000 to
pass the rule. Some states waited particularly long, with Colorado beginning enforcement only in
2015. The wide variation in passage dates provides the variation I will exploit.

I estimate the specification above, instrumenting for the wages of accountants using an indicator
for whether the state has adopted the 150-hour rule or not by date t. The estimates I obtain
are substantially larger and statistically significant. This indicates the presence of substantial
attenuation bias in the OLS estimate, which can indicate a mixture of measurement error in the
mean wages measure and also the impact of confounding variables which are positively related
to changes in adoption and negatively with the average wages of accountants37. The exact point
estimates from the IV regressions are hard to interpret quantitatively since the instrument is
relatively weak; what is important is that the signs of the estimates from the two regressions are
positive.

7.1.4 The slowdown in Accountant wage growth

To study the slowdown in the wage growth for accountants, I run variants of the regression

∆t−10→t log wACCT
i,ct = β0 + β1∆t−10→tFracAdoptACCT

ct + δs + x′ct−10β + εct

37One story for this: if firms which are more likely to adopt technologies locate in areas with relatively low accounting
wages, possibly to save on the costs of setting up an accounting department which performs non-production related
tasks, then the propensity to adopt technologies is an omitted variable that is negatively correlated with accountant
wages and positively with the adoption measure.
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where ∆t−10→t log wACCT
i,ct ≡ log wACCT

i,ct − log wACCT
i,ct−10 is the 10-year change in mean log wages of

accountants who are skilled (i = s) or unskilled (i = u) in a given commuting zone and δs denotes
a state fixed effect. I run this regression using a stacked panel with t = 2000, 2010, implying that
I study changes over the periods 1990-2000 and 2000-2010. I choose these periods because post
2010, the Harte-Hanks data underwent significant changes including a reclassification of many
technologies and a large increase in the sampling frame, which affects the representativeness of
the sample. My results thus reflect the impacts of accounting software on accountants, and do
not include the impacts that the deployment of more advanced technologies like AI and cloud
computing. Identification requires that conditional on covariates, changes in the share of firms
adopting technologies are orthogonal to other forces that might affect the extent to which wages for
accountants in particular are higher across commuting zones within a state.

Table 4 shows that the effect of rising adoption are consistently negative on the growth rate of wages
over the long period. The left panel shows changes in wages of skilled workers and the right panel
shows changes in wages of unskilled workers. To interpret magnitudes, accountants in commuting
zones at the 25th percentile of exposure growth saw their wages grow about 4.4 percentage points38

over 10 years slower than accountants at the 75th percentile of exposure growth. To get a sense
of the magnitudes involved, the average growth rate of real wages for skilled accountants across
commuting zones (weighted by hours worked) was about 8.5 percentage points between 1990 and
2000, and -1.9 percentage points between 2000 and 2010. This result is robust to the inclusion of
a wide range of time-varying controls for differences across commuting zones within states. The
effect for unskilled workers is also negative, but disappears once I control for average income in
the commuting zone and include controls for industrial composition.

7.2 The rising exposure of skilled occupations to technical change

I use the method developed by Webb (2020) to document that the exposure of occupations to
new inventions has shifted toward occupations that are relatively high-skilled. The idea of this
method is to identify tasks as verb-noun pairs, where the noun is the direct object of the verb, from
unstructured text descriptions of occupational tasks and from the descriptions of technologies. For
instance, consider a patent titled “Method for generating a bitmap.” My algorithm extracts the
verb-noun pair (generating, bitmap). I lemmatize the verb to ensure that different tenses or cases
associated with a verb are all mapped to the root of the verb (hence translating “generating” into
its verb form “to generate”). I lemmatize the noun as well. Since patent titles use relatively specific
nouns (“bitmap”) and occupational tasks use relatively general nouns (“image”), I use WordNet,
an English Language corpus which groups nouns into hierarchies of concepts. At a given level of
this hierarchy, conceptual categories are mutually exclusive, allowing me to translate nouns to a
common level of generality. I follow Webb (2020) and use WordNet level 3, checking that using

38−0.0438 = −0.0996 × (0.57 − 0.308), where −0.0996 is the coefficient on adoption growth and the 25th and 75th
percentiles of changes in the exposure growth measure are 30.8 percentage points and 57 percentage points respectively.
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Changes in Skilled Wages Changes in Unskilled Wages
∆ws,ct ∆ws,ct ∆ws,ct ∆wu,ct ∆wu,ct ∆wu,ct

∆FracAdoptACCT
ct -0.162*** -0.153*** -0.0996*** -0.0391** -0.0366** -0.0244

(0.0359) (0.0356) (0.0338) (0.0166) (0.0170) (0.0176)

State FE Y Y Y Y Y Y
Race Comp. Controls Y Y Y Y Y Y

Age Controls N Y Y N Y Y
Income, Industry Controls N N Y N N Y

N 1,386 1,386 1,386 1,386 1,386 1,386

Table 4: An observation is a 10-year change in skilled wage growth and a 10-year change in cumulative adoption
rates as defined above in a commuting zone-year pair. Observations weighted by commuting zone population in initial
period. Data on wage growth from ACS 1990, 2000, 2010. Data on rising adoption of Accounting technologies from
Computer Intelligence Technology Database (CiTDB). Race controls include indicators for share of Black and share
of other racial groups (with whites as the base category). Age controls include indicators for fraction of population
below 18 and fraction above 65. Income, Industry controls include per capita income, employment-population ratio,
share employed in manufacturing and share employed in services industries. All regressions include state fixed effects.
Standard errors clustered at the commuting zone level in parentheses. *, **, *** indicate statistical significance at 0.1, 0.05
and 0.01% respectively.

level 4 does not drastically alter results. Appendix 2 describes this process in more detail.

I start with data on patents from the USPTO’s PatentsView database. From the titles of these
patents I extract the set of all (noun,verb) pairs associated with a patent. I assume that these
bigrams individually identify a task performed by the invention39. I next perform a similar exercise
with the definitions of occupations in the Department of Labor’s O*NET Database, which contains
occupation-level information on the tasks performed by workers on that occupation. For each
occupation, I compute, year-by-year, the cosine similarity between the tasks identified in the Tasks
section of the occupation’s O*NET entry and the tasks associated with all inventions in a given
year. This exercise provides a measure of exposure for each occupation to technological changes
occurring in a given year40.

Figure 14 shows that the rise in the exposure metric has been highest for occupations in the top
quintile of the distribution of skill intensity. My results complement those of Kogan et al. (2021),

39I reduce the generality of all nouns using the lexical database WordNet’s conceptual hierarchy for each noun. This is
important since at the level of generality associated with patent titles or occupational task descriptions, the set of exactly
overlapping (noun, verb) pairs is virtually empty. This is because patents can be extremely specific in their titles but refer
to technologies with much wider applicability. A similar argument holds for occupational titles.

40For validation of my measure, figure 19 shows the exposure measure for occupations of different levels of routineness
to validate the exposure measure. It is clear that between 1980 and 2000, technological changes were overwhelmingly
directed at performing the kinds of tasks that routine manual employees performed, which is exactly in line with the
Routine-biased technological change literature. Over time, as the technologies necessary to automate these tasks mature
and eventually are adopted into the workforce, the effects on the labor market show up in the form of job polarization
and wage polarization. However, importantly for the purpose of this paper, over the period starting roughly in the mid
1990s, there is a steady increase in the exposure of nonroutine and cognitive occupations, which continues throughout
the 2000s. This increase occurs roughly at the same time as the initial slowdown of the skill premium, suggesting that
the two may be linked.
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Figure 14: Exposure to technical change of Occupations in different quintiles of the skill intensity distribution (skill
intensity measured by mean value of ℓs/ℓu in 2000, weighted by total hours worked in that occupation.). Exposure is
measured by the cosine similarity between overlapping sets of bigrams representing tasks in O*NET Occupational Tasks
and USPTO Patent Titles.

who use a different natural language processing approach to quantify the rising exposure to drastic
innovations of different groups, and conclude that there has been a large increase in the exposure
of relatively well-paid, experienced and skilled workers. My results are also robust to constructing
the cosine similarity measure using sets of just verbs, instead of bigrams.

8 Conclusion

Simultaneously rationalizing the behavior of the skill premium and the labor share of income is a
challenge for most models explaining skill-driven inequality via the relationship between skills
and technological change. I construct a simple model in which endogenous technology adoption in
response to an initial rise in the skill premium causes a slowdown in the growth of skilled labor
demand. This slowdown endogenously slows growth in the skill premium and growth in skilled
labor’s share of income, allowing the model to rationalize the fall in the labor share.
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A key conclusion of the analysis in this paper is that in an economy where firms choose their
technologies, inequality in labor incomes between different groups with different skills is unlikely
to persist permanently. As inter-group inequality rises, endogenous incentives to direct innovation
at displacing the relatively expensive group of workers brings the premium earned by the best
compensated groups back in line with differences in effective units of labor supplied. Crucial to this
analysis is the ability of firms to displace workers of different skill levels with capital. This analysis
also suggests that going forward, inequality-averse policymakers should focus more explicitly on
compressing inequality in the functional income distribution via instruments like capital income
taxation41.

There are several substantial extensions possible for this paper. First, including an endogenous
supply for skilled labor would allow for counterfactuals particularly relevant to contemporary
settings, such as whether subsidizing college is a valuable policy measure and on whether capital
or labor income taxation is a more appropriate policy measure. Second, in this paper, there is no
possibility for skilled labor to displace unskilled labor at the tasks it performs - all substitution
between skilled labor and unskilled labor occurs through movements along an isoquant. Adding
this margin would allow the model to explore the implications of downskilling: as technologies
displace skilled labor gradually, skilled workers would start encroaching on tasks that were
previously the domain of unskilled labor, as discussed in Beaudry et al. (2016). Third, this model
features two skill types. An extension to multiple skill types would allow the model to speak to
issues such as labor market polarization.

41See Acemoglu et al. (2020a) and Guerreiro et al. (2022), for instance.
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Figure 15: Share of a given group of majors awarded out of all degrees awarded in the academic year beginning
in the year indicated (so the column labelled 1970 contains shares of majors in the total number of degrees awarded
in academic year 1970-1971). Data from the National Center for Education Statistics (various years), Undergraduate
Retention and Graduation Rates. Condition of Education. U.S. Department of Education, Institute of Education Sciences.
The original data can be accessed here. I aggregate some degree categories for legibility.

A Appendix

A.1 Alternative Explanations for the slowdown in the skill premium

I consider three prominent alternative hypotheses that might account for the slowdown in the skill
premium other than technology driven displacement: changes in the distribution of degrees earned
by students, selection into who attends college and composition effects across occupations and
industries.

A.1.1 Changes in the distribution of degrees earned by students

It is possible that new students entering colleges are pursuing less marketable majors and thus
acquiring less valuable human capital in college. In figure 15, I show that to the contrary, the
distribution of degrees awarded has remained reasonably stable over the last 45 years. The largest
changes are the declines in education, social sciences and humanities and the increases in business
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Figure 16: Distribution of degrees held by the college-graduate population in each given year. Data from ACS
2009-2019, aggregated using demographic weights.

and healthcare occupation degrees42. This pattern of changes suggests, if anything, that students are
more likely to pursue relatively more marketable majors today43. Data on the distribution of degrees
held in the population is scarce before 2009, when the ACS started collecting this information.
Between 2009 and 2019, an important period for the slowdown in the skill premium, there was
essentially no change in this distribution (see figure 16).

A.1.2 Selection on ability in the composition of the skilled population

If attendance at college is expensive and there is a unidimensional attribute a which raises the
private benefits of attendance, only individuals with sufficiently high values of a choose to go
to college. A rising college population then implies that the threshold value of a above which
attendance is optimal is declining. If wages are also increasing in this attribute44, then it is possible

42My results are consistent with patterns documented by Altonji et al. (2012), who show the declining trend in
education majors occurs for both genders.

43Grogger and Eide (1995) use data from the National Longitudinal Study of the High School Class of 1972 to show
that this trend of college graduates choosing degrees with higher premia can account for about 25% of the increase in the
skill premium for men in the 1980s.

44This could include a measure of ability which affects private costs of college attendance, in line with signaling
models of higher education (Spence, 1973), or be directly based on heterogeneity in learning ability that interacts with
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that the skill premium could decline via a fall in the average value of the attribute among college-
educated workers relative to that among those without a college education.

I argue this is unlikely to contribute substantially to the skill premium’s slowdown for three reasons.

First, note that this form of selection would also reduce the average wage for the unskilled popu-
lation. This is because the worker at the margin of acquiring skills is simultaneously less skilled
than the mean skilled worker and more skilled than the mean unskilled worker. The net effect of
selection is thus ambiguous. With multidimensional attributes governing selection, the impacts of
selection on the average wages of the two groups is much more difficult to characterize (see, eg
Lindenlaub (2017)).

Second, there has been a substantial increase in college costs over the time period considered. In a
model of one-dimensional selection, this would (all else equal) raise the threshold level of a. An
increase in the supply of skilled labor would then have to be rationalized either by a rising value of
the skill premium, rather than a slowdown, or by a trend in the average level of a over time in the
entire population.

Finally, there is direct evidence that suggests that the average ability of college graduates has
risen relative to undergraduate students. Structural models of college attendance (Hendricks
and Leukhina, 2014, 2017) show that students who attend college are, more often than not, well-
informed about their own higher ability, which contributes to their ability to complete college and
attain the benefits of the skill premium.

A.1.3 Compositional shifts across occupations and industries

Growth in the skill premium can decline if there is a reallocation of workers towards occupations or
industries in which the skill premium is lower. The US has seen substantial shifts in its occupational
and industrial structure. I argue this force by itself is unlikely to explain a large fraction of the
change in the slowdown in the skill premium. To see this, I show in figures 17 and 18 that this
slowdown is visible within industries and occupation groups. Table 5 formally runs Katz-Murphy
regressions occupation-by-occupation and reports the p-value of a Wald test for a trend break in
the year 2000.

the ability of workers to earn income (Leukhina and McGillicuddy, 2019).
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Figure 17: CPS ASEC 1980-2019, Males 16-64. The skill premium is the difference in the (log of) composition-adjusted
residual mean hourly earnings of skilled to unskilled. In calculating this mean, averages are taken over composition-
adjusted average wages (residualized on race, age and experience categories) within categories of workers by education,
experience and race, each group weighted using labor supply weights. Skilled workers are defined as workers with a
college degree or more, plus 1/2 the workers with some college. Occupations are defined by consistent occ1990dd codes
(Autor and Dorn, 2013).

A.2 Rising Exposure of Skilled Occupations to Technical Change and Technology
Adoption

I provide a self-contained description of the process by which I document rising exposure of
relatively skilled occupations to technical change. The technique follows Webb (2020) very closely
and exploits the power of Python’s SpaCy package, which provides extensive natural language
processing functionalities and pre-trained models. I will rely throughout on the pre-trained
en_core_web_trf model.

First, I define a task as a (verb,noun) pair where the noun is the direct object, or a conjunct of the
direct object, of the verb. I extract tasks from descriptions of occupations or technologies as follows.

• Using SpaCy’s Dependency Parsing algorithm, I convert descriptions of occupations into a
hierarchal sentence tree, which associates with each word (token) in the description a part of
speech and a head which is its antecedent in the sentence tree.

• For all words identified by the part of speech tagger as a verb, I identify the first direct object
which lies on the verb’s subtree as defined by the head relationship. That is, I consider the
verb’s head. If the head is a noun and is a direct object, then I store the verb and noun. If not,

59

https://spacy.io/usage/spacy-101#annotations-pos-deps


Figure 18: CPS ASEC 1980-2019, Males 16-64. The skill premium is the difference in the (log of) composition-adjusted
residual mean hourly earnings of skilled to unskilled. In calculating this mean, averages are taken over composition-
adjusted average wages (residualized on race, age and experience categories) within categories of workers by education,
experience and race, each group weighted using labor supply weights. Skilled workers are defined as workers with a
college degree or more, plus 1/2 the workers with some college. Industries defined by consistent Census ind90ly codes
assigned by IPUMS, aggregated to highest level.

I identify the head of the head, and check this new token. I repeat until a head is identified or
until the algorithm reaches the root of the sentence. At this point, I reject the noun if no root
is found45.

• I lemmatize verbs using the lemmatizer that accompanies the en_core_web_trf model.

• I translate nouns to a higher level of generality using WordNet 3.1’s hierarchical structure for
nouns, which associates nouns with their conceptual antecedents. This procedure accounts
for the fact that patent descriptions tend to use specific nouns while occupation descriptions
tend to be more general. I use WordNet level 4 as the common level to which I convert all
nouns.

• I drop (verb, noun) pairs associated with attribution (for instance, containing the verb “to be”
or “to have”), and drop patents associated with the invention of specific chemical compounds,
which leads to a large number of false positives due to the trained model’s inability to
recognize the text associated with them as a noun.

45For instance, among the tasks that CEOs perform is “participate in meetings of committees.” In this task description,
the verb “to participate” has no direct object.
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(1) (2) (3) (4) (5) (6)

Clerical/
Retail

Mgr., Prof.,
Tech.

Operatives Prodn.
Workers

Service
Workers

Transp.,
Mech.,
Crafts.

Time Trend 0.00625*** 0.00882*** 0.00131 0.00119 0.00378*** 0.00292***
(0.000702) (0.00137) (0.00182) (0.00106) (0.000864) (0.000808)

log ℓs
ℓu

-0.0679 -0.160* 0.0563 0.0911 0.0210 0.0165
(0.0620) (0.0917) (0.0603) (0.0580) (0.0431) (0.0407)

N 41 41 41 41 41 41

p-value 0.000 0.000 0.003 0.005 0.000 0.000

Table 5: Regression results from running Katz-Murphy regressions separately by industry. Robust standard errors in
parentheses. The final row shows the p-value from a Wald test of a structural break in the data in 2000.

This task extraction procedure described above is used to extract tasks from two datasets. The first
is from the titles46 of all patents awarded in a given year. The second is the task descriptions file
from O*NET 26.3, which contains a description of a large number of tasks actually performed on
the job by workers of a given occupation. To describe the application of the procedure above, I now
introduce some notation. Let Pt be the set of all patents awarded in a given year. The notation
p ∈ Pt will indicate that patent p was filed in year t. Let O be the set of all occupations listed in
O*NET 26.3, and let o ∈ O index an occupation.

First, for each patent p ∈ Pt, I obtain the set of tasks τp(p) = {τ | τ extracted from the title of p}.
Let T patents

t =
⋃

p∈Pt
τp(p) be the set of all tasks that are mentioned at least once in a patent filed

at date t. I construct weights for all patents based on the citations they obtain from year t to t + 5,
normalized to add up to 1. Letting ω(p) be the weight assigned to patent p, I construct the ordered
set of weights associated with each task ever mentioned in a patent at year t,

ṽPATENTS
t =

{
∑

p∈Pt

ω(p)1 (τ ∈ τ(p))
∣∣∣∣τ ∈ T patents

t

}

Note that an element of this vector is the weight associated with a given task, with the weight of a
task equal to the sum of the weights of all patents containing it. This weights tasks associated with
particularly influential patents by more, making v more representative of the task capabilities of
innovations made in year t. I normalize the vector ṽPATENTS

t to sum to 1.

Second, for each occupation o ∈ O, O*NET provides a set of task descriptions τ̂ ∈ T Donet
o .

I extract tasks τo(τ̂) = {τ | τ extracted from task description τ̂ of occupation o}. Let T onet
o =⋃

τ̂∈T Donet
o

τo(τ̂). O*NET provides importance and relevance scale measures for each O*NET task
description τ̂, and I use the importance measure to construct the analogous ordered set of weights

46I follow Webb (2020) in using only patent titles, since patent abstracts and titles contain descriptions of the previous
art and extra information which raises the noise to signal ratio when extracting tasks. An interesting extension of this
approach could be to use patent claims information, available via the USPTO’s PatentsView database.
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associated with each task ever mentioned in a task description for a given occupation,

ṽONET
o =

 ∑
τ̂∈T Donet

o

ω IM(τ̂)1 (τ ∈ τ̂) | τ ∈ T onet
o


As above, I normalize the vector ṽONET

o to sum to 1.

Next, for each occupation o and year t, I identify the set of tasks which appear in both the description
of the occupation and in the set of patent tasks for year t, Tot = T patents

t
⋂ T onet

o . I define the
restricted vectors

vPATENTS
t =

{
∑

p∈Pt

ω(p)1 (τ ∈ τ(p))
∣∣∣∣τ ∈ Tot

}
and

vONET
o =

 ∑
τ̂∈T Donet

o

ω IM(τ̂)1 (τ ∈ τ̂)

∣∣∣∣τ ∈ Tot


which restricts the weight vectors to only the common set of tasks. I compute the Cosine simi-
larity between these vectors, which provides a measure of the exposure of occupation o to new
technologies created in year t.

CosineSimilarity(o, t) =
vPATENTS

t · vONET
o

||vPATENTS
t || ||vONET

o ||

Figure 19 shows the rising exposure of different groups of occupations by their classification into
routine/non-routine and cognitive/manual. While the exposure of routine and manual occupations
remains high throughout the sample period, it is clear that there has been a large increase in the
exposure of routine/cognitive occupations since 1980. Figure 20 shows that changes in the exposure
metric have concentrated on occupations that weren’t necessarily the most exposed and is another
validation of the metric.
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Figure 19: Exposure of different occupational groups to technological change in each year, measured by the cosine
similarity in the set of Bigrams (TOP) or Verbs only (Bottom). Data from O*NET and USPTO PatentsView.
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Figure 20: Exposure of different occupational groups to technological change, measured by the cosine similarity in the
set of Bigrams. Data from O*NET and USPTO PatentsView.
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A.3 Datasets and Data Cleaning Procedures

A.3.1 Census/ACS Data

I obtain data from the Integrated Public-Use Microdata System Flood et al. (2021), which provides
harmonized microdata from the US Census bureau. I use the following files in all analyses:

• The 1980 and 1990 5% state samples

• The 2000 5% sample

• The 2009, 2010, 2011, 2017, 2018 and 2019 ACS samples. I pool the 2009-2011 data for 2010
and the 2017-2019 data for 2018.

I follow the following sample selection and data cleaning procedure across all samples.

• I drop unpaid family workers (classwkrd=29).

• I retain only regular households and exclude individuals who live in group quarters, such
as in institutional settings (i.e. keep households such that gqtyped<100 or gqtyped>499 or
gqtyped is missing).

• I retain only civilians. To do this, I do the following.

– drop workers if their detailed employment status (empstatd) lies between 13 and 15
(“armed forces” workers)

– drop workers if their reported occupation is a military occupation, (occ90ly=905), and
if their employment status does not explicitly reflect private sector employment (i.e. if
empstatd ̸= 10).

– drop workers if their reported occupation is a military occupation, (occ90ly=905, and
their reported industry is a military one (ind90ly lies between 940 and 960).

• I retain only working-age workers (aged 18-65).

• I drop any observations for which industry, occupation information and county are all
simultaneously missing.

The resulting sample constitutes the base sample on which I estimate wages. To do so, I proceed as
follows, largely following Hoffmann et al. (2020).

• I set income variables, hours worked and weeks worked to missing if these variables are
allocated. If the allocation flag for these variables indicates that an observation was not
allocated and the value is missing, I set the value to 0. If any of these variables is ever
negative, I set the corresponding value to 0.

• For some of the years, the variable for weeks worked (wkswork1) is not available, and we
only have a measure of the interval for weeks worked (wkswork2). In these years, I impute
wkswork1 using the midpoint of the interval defined by wkswork2. I similarly impute usual
hours worked, uhrswork, using hrswork2 where required.
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• I construct annual hours as the product of weeks worked (wkswork2) and usual hours worked
(uhrswork). I define workers to be full-time-full-year employed if their usual hours worked
per week exceeds 30 and they worked at least 48 weeks last year.

• I recode years of education by sex, race and highest attained educational classification, which
is an important variable both to classify workers by skill status and to construct their years
of experience. I do this following the imputation procedure in Acemoglu and Autor (2011),
using codes available on their website. I construct potential experience using the formula
ExpPot

it = max {0, Ageit − YearsEducit − 6}.

• I construct consistent occupation codes using IPUMS’ occ1990 codes to construct the coding
occ1990dd, following the work of Autor and Dorn (2013) and Autor (2015). I construct the
mapping between 2010-11 ACS Codes, 2017-2018 ACS Codes and 2019 ACS codes and the
variable occ1990dd from scratch, following the principles defined by the appendix of Dorn
(2009). I do the same for harmonized ind1990 codes.

• I construct labor supply weights for workers in the data, where the weight for worker i in
year t is given by

ωLS
it = ω

demog
it × wksworkit

52
× uhrsworkit

35
Intuitively, the labor supply weight multiplies the demographic weight by the number of
full-time-equivalent labor supply hours supplied by a worker in a given year. For workers
for whom any one of weeks worked per year or usual hours worked is missing (and yet the
worker is classified as employed), I impute the labor supply weight using a regression of
the labor supply weights on dummies for sex, race, age categories, education categories and
occupation categories.

• I convert all nominal variables to real variables in 2018 dollars, using the GDP Deflator (FRED
database series GDPDEF).

• I deal with topcoded values as follows.

– For the 1980 data, I follow the literature (see eg Autor (2015)) and multiply wage and
labor income by an adjustment factor of 1.4 if these are equal to their topcode values
($75,000 in current 1980 dollars).

– For the 1990 data, values of income variables above the threshold were imputed using
the state-level median value above the threshold (so for instance, wage incomes above
$140,000 in Arkansas were replaced by the median wage income for all individuals
earning above $140,000 in Arkansas). I use the following Pareto Imputation algorithm
for these values. Let y be the threshold value for incomes, and let y(50) be the median of
values of income above y. I assume that incomes for individuals within the state above
ȳ follow a Pareto distribution with tail coefficient α. This implies that

Pr
(

y ≥ y(50)
)

=
1
2

=⇒
( y

y(50)

)α

=
1
2

=⇒ α =
log 2

log
(

y(50)/y
)
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which I use to calculate α state-by-state. I then use the formula for the mean of a Pareto
distribution to assign the mean value above the threshold to each household, using the
formula for the mean of a Pareto distribution, α

α−1 y.

– For the years 2000 onward, IPUMS replaced the topcoded values by the mean value
above the topcode state-by-state. I do not adjust these values.

• Following Hoffmann et al. (2020), I compute wages as the total market income, which is wage
and salary income plus any income from operating one’s own business, divided by hours
worked. Results based on using salary income alone are virtually identical. Following the
labor literature, I drop all observations with real wages below the 1980 minimum wage and
drop the top 1% of observations.

• I perform a composition adjustment, following Autor (2019) closely. I group all agents into
2 sex and 3 race (white, black and other) categories. I run a regression of log hourly wages
saturated in these categories interacted with a 4th-order polynomial in potential experience,
and use the residuals from this regression in further analyses.

A.3.2 CPS Data

I use data from the Annual Socio-Economic Complement of the CPS and clean the data closely
following Hoffmann et al. (2020).

• I correct the demographic weights for the ASEC to ensure that they sum to 1 correctly. To
do this, I first divide all demographic weights by 10,000, then drop all observations with
negative weights, and modify the weights for 2014 by multiplying them either by 3/8 or 5/8
as required by the variable hflag.

• I retain only individuals aged 18-65 and recode years of education, accounting for the fact
that in 1992 a change in the CPS meant that the years of schooling completed was no longer
reported. I impute years of schooling for all households by race, sex and reported highest
grade completed following Autor et al. (2008) and Autor (2019). I construct potential experi-
ence using the formula ExpPot

it = max {0, Ageit − YearsEducit − 7}. Finally, I reduce years of
education to 5 categories (less than high school, high school diploma, some college, college
degree and some post-college education).

• I impute weeks worked where required following the same procedure as for the ACS, and do
the same for usual hours worked.

• For observations starting after 1976, I follow Hoffmann et al. (2020)’s methodology to deal
with the fact that topcoded income variables were swapped across neighboring observations.
I also use their methodology to construct labor income and wage income for households and
use their adjustment procedure.

• I construct composition-adjusted real wages following47 Autor (2019). I run a regression
of individual wages on a set of race, region and experience categories, separately for each
year and separately by gender. For each education and experience category, I construct the
predicted wages for a white individual with 10 years of experience averaged across all regions

47Performing the analysis using the method in Lemieux (2006) produces qualitatively similar results.
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proportional to their share of hours worked as the relevant wage variable for analysis. The
wage measure thus constructed is composition-adjusted since it is not affected by changes in
the gender, race, and regional composition of the population.

A.3.3 Harte-Hanks/Aberdeen Data

Data on IT capital and plant-level stocks of skilled and unskilled workers come from the Computer
Intelligence Technology Database (CiTDB), which was produced by Harte-Hanks Intelligence until
2015 and by the Aberdeen Group, a spin-off from Harte-Hanks, thereafter. The database has gone
through multiple re-designs over time. My extract of the data consists of three iterations:

• the “MITYE” files: a set of raw data files obtained for the years 1987-1995 and 2000-2001,
corresponding to a combination of the variables in the site description and site computing
summary tables.

• the “DOMS” files: a set of files for 1992-2002 at 2-year intervals obtained from Mark Doms’
data archive, corresponding to a combination of the variables in the site description and site
computing summary tables. These data also include the stocks of product-specific IT capital
at each plant.

• the “CiTDB” files: a set of files obtained from Harte-Hanks for academic use for the years
1996, 1999, 2003, 2004, 2006, 2008-10, 2012-2016.

The three sets of files contain the same data, but in different formats with different variable names
and with different sets of value labels. Industry and geographic data are rich but incomplete and
inconsistent across plants over time and even across industries (with a significant number of NAICS
codes and SIC codes mutually inconsistent with each other). To fix this and combine the datasets, I
employ a number of steps as follows.

1. Cleaning up industry codes: I clean up industry codes year-by-year, looking within the
appropriate source file for the observation.

• The “MITYE” files: For each observation, we have the 4-digit SIC Code. I impute SIC
Codes for observations with missing codes using the corporation identifiers corpcode
and icorp, which identify the ultimate and immediate corporate parents of the plant.
When different plants within the same firm have different SIC Codes, I use the modal
SIC Code across plants within each firm for the imputation. When there are multiple
modal SIC Codes, I pick the lowest one. The sample consists of 243,596 plants, with an
average of 27,066 plants per year.

• The “DOMS” files: I use the same process as above. The sample contains 1,210,580
observations, with an average of 172,940 plants per year.

• The “CiTDB” files: I use the same process as above. The sample contains 21,454,593
observations, with an average of 401,451 plants per year prior to 2010 and 3,107,406
plants per year between 2010-2016. This large jump in coverage in 2010 is driven by the
large increase in relatively small establishments covered by Harte-Hanks.

2. Cleaning up geography codes: Since geographic codes are expected to be stable over time
within a site ID, I iteratively clean the data to ensure that each site in my dataset maps to a
unique stable geography. I do this as follows.
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• I append all three samples together to obtain one large panel. In order to do this, I
reconstruct the site ID to be consistent across years (the MITYE files use an 8-digit ID
while the DOMS and CiTDB files use a 9-digit ID). In doing so, I only retain observations
in the mainland USA (i.e. I drop establishments in Alaska and Hawaii).

• I pre-process the geographic variables I will use, which include the 5-digit zipcode of an
establishment, the county FIPS code, the state, metropolitan statistical area (MSA) and
major metropolitan area. I correct some obvious errors (inconsistent names and codes
for MSAs or zipcodes/towns) directly at this stage to reduce the computational burden
of the steps that follow.

• I construct crosswalks which uniquely link the codes associated with each of these
variables to the names of the respective geographies. This is important because for a
large number of observations, the name of a geography, say the name for a metropolitan
statistical area, can be inconsistent with the MSA code reported. I use these crosswalks
to harmonize names and codes for counties, metro areas and states.

• I impute the county, zipcode and metro area for all sites which have a unique county
associated with all the non-missing observations for these sites.

• I use the GeoNames database to obtain a list of valid ZIP codes and a list of geographic
features, retaining cities and towns. If an observation has a valid zipcode, I replace the
remaining variables (MSA, county and state) to be consistent with this zipcode. The idea
is that the zipcode, being the component of the address that one most frequently enters
into surveys and forms, is likely to be more salient and therefore less error prone than
the reported county or MSA. In practice, this step never changes the state associated
with an observation.

• I choose the county associated with the greatest number of observations for each zipcode.
I replace the county variable by this chosen county in any observation with that zipcode
and for which the geonames-reported county agrees with the chosen county. I fix some
faulty observations by hand.

• I retain observations for which zipcodes do not have a good match to GeoNames. I
construct the outer product of this dataset with the GeoNames zipcode dataset and
obtain the best matching true zipcode, which is defined as the minimizer of the quadratic
loss function

Q01 = [Zip0 − Zip1]
2 +

[
Levenshtein (Zip0 − Zip1)

2
]

The idea here is to minimize the distance both in the numeric space in which zipcodes
live, but also in terms of their string similarity, which is more relevant for errors associ-
ated with data entry or inattention. I replace bad zipcodes by their best matching true
zipcode.

• At this stage, I replace all bad observations on geography (i.e. ones with an inconsistent
zipcode or county-zipcode match) by good ones associated with the same site ID.

• Finally, for any bad observations that still survive, I impute the zipcode using the modal
zipcode using the city-state combination, and thus assign a county based on this modal
zipcode. I drop any observations for which this final step is impossible to perform.

3. Constructing Weights: I use the County Business Practices dataset to construct the num-
ber of establishments at the two-digit industry and county level. I construct weights for
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establishments in county c and industry i at date t using

wcit =
NCBP

cit

NHH
cit

where NCBP
cit , NHH

cit are the number of establishments in county c and industry i at date t
in the County Business Practices and the Harte-Hanks datasets. There are some county-
industry-year combinations for which the Harte-Hanks count exceeds the CBP count, which
probably indicates the presence of measurement error in Harte-Hanks. I choose to retain
these observations nonetheless, with weights less than 1.

4. Identifying Accounting Software: To be classified as an accounting software technology, a
technology must meet all of the following criteria.

(a) The technology must belong to technology class PRG, indicating software.

(b) Either the model group or the model series must contain one or more of the terms “Ac-
counting”, “A/P” (Accounts Payable), “A/R” (Accounts Receivable) or “G/L” (General
Ledger).

(c) For any remaining technologies, the technology’s description or definition must include
one of the terms above.

When I perform this classification, I require that a technology ever classified as an accounting
technology by an establishment is classified as an accounting technology at all dates for that
establishment. For example, suppose an establishment f classifies the technology “Microsoft
Excel” as an accounting technology at date t but not at date t + 1. I consider the establishment
f to be using “Microsoft Excel” as an accounting technology at date t + 1 as well.
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A.4 Derivation of the Ideal Price Index Condition from the Retailer’s Problem

Recall that the final goods retailer solves the following profit maximization problem.

max
Yt,yt(s)

PtYt −
∫

ptytdMt subject to [λF
t ] : Yt =

[∫
y

α−1
α

t (s)dMt(s)
] α

α−1

The focs of this problem give

[yt] : pt = λF
t

(
yt

Yt

)−1/α

[Yt] : Pt = λF
t

Eliminate the λF
t to obtain the demand curves for each firm,

yt(s) =
(

pt(s)
Pt

)−α

Yt

Next, substitute for yt into the production function to get

Yt =

[∫
y

α−1
α

t (s)dMt

] α
α−1

=⇒ Y
α−1

α
t =

∫ ( pt(s)
Pt

)1−α

Y
α−1

α
t dMt

=⇒ P1−α
t =

∫
p1−α

t (s)dMt

Pt =

[∫
p1−α

t (s)dMt

] 1
1−α

For the final good to be the numeraire we must have Pt = 1 which immediately yields the condition
5.
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A.5 Static Profit Maximization by the Firm

I prove both lemmas 1 and 2 simultaneously by solving for the period profit function, which
requires solving for the allocation of factors across tasks as a first step. Recall that the period profit
function πt (λs, λu, z; st) solves

πt (λs, λu, z; st) = max
{Gi ,{YGi(x),ℓi(x),ki(x)}1

x=0}i=u,s
,G,p,y

py

−
∫ 1

0
(rktku(x) + wutℓu(x)) dx

−
∫ 1

0
(rktks(x) + wstℓs(x)) dx

subject to, for i = s, u,

[Λy,D] : y ≥ p−αYt

[Λy,F] : y ≤ z
[
µGu (ℓu, ku)

σ−1
σ + (1 − µ)Gs (ℓs, ks)

σ−1
σ

] σ
σ−1

[ΛG
yi (xi)] : Yi (xi) =

{
ψi (xi) ℓi (xi) + ki (xi) xi ≤ λi

ψi (xi) ℓi (xi) xi > λi

[ΛG
k0i (xi)] : ki (xi) ≥ 0

[ΛG
ℓ0i (xi)] : ℓi (xi) ≥ 0

[ΛG
i ] : Gi ≤

[∫
Yi (xi)

ρ−1
ρ dxi

] ρ
ρ−1

For ease of notation, define µu = µ and µs = 1 − µ and drop time subscripts since this problem is
static. The first order conditions of this problem are

[Gi] : ΛG
i = z

(y
z

) 1
σ

µiG
− 1

σ
i Λy,F

[YGi (xi)] : ΛG
yi (xi) = ΛG

i

(
Gi

YGi (xi)

) 1
ρ

[ki (xi)] : rk =

{
ΛG

k0i (xi) + ΛG
yi (xi) xi ≤ λ

ΛG
k0i (xi) xi > λ

[ℓi (xi)] : wi = ΛG
ℓ0i (xi) + ΛG

yi (xi)ψi (xi)

[p] : 0 = y − Λy,Dαp−α−1Y
[y] : Λy,F + Λy,D = p

along with appropriate complementary slackness conditions on all the constraints. We can solve
this system as follows.

• Static profit maximization. Since there are no fixed costs in the static problem and the
production function is constant returns to scale, it is clearly never optimal to produce y = 0.
This immediately implies that p > 0 from the foc for p. But the final focs then imply
Λy,D, Λy,F > 0, so the demand curve and the production function constraints hold with
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equality. From the foc for p, we get

Λy,D =
p−αY

αp−α−1Y
=

p
α

=⇒ Λy,F =
α − 1

α
p > 0

Since Λy,F is the multiplier on the production function constraint, it is also the marginal cost
of production by the Envelope Theorem. Thus, this equation just says that

p =
α

α − 1
MC

which is the standard constant markup formula that emerges from the CES demand system
combined with constant returns to scale production.

• Cost minimization, part 1: All inputs are essential. We argued above that y > 0. Both µi

values are strictly positive in the calibration. Thus, it must be that ΛG
i G

1
σ
i > 0 which is only

possible if ΛG
i > 0 and Gi > 0. From the foc for YGi, this implies that ΛG

yi (xi)YGi (xi)
1
ρ > 0

which in turn implies that YGi (xi) > 0. This implies that either ki (xi) > 0 or ℓi (xi) > 0.
Therefore, at most one of ΛG

ℓ0i (xi) and ΛG
k0i (xi) is positive.

• Cost minimization, part 2: Factor allocation. Consider the foc for ki (xi).

– For xi > λ we have ΛG
k0i (xi) = rk > 0, which implies ki (xi) = 0. Since YGi (xi) > 0

nonetheless, this task must be produced entirely by labor, so we have ℓi (xi) =
YGi(xi)
ψi(xi)

.

– For xi < λ combining the two first order conditions for ki (xi) and ℓi (xi) yields

wi

ψi (xi)
− rk =

ΛG
ℓ0i (xi)

ψi (xi)
− ΛG

k0i (xi) (19)

Define λ̂i (wi, rk) as the value of x such that

wi

ψi
(
λ̂ (wi, rk)

) = rk

Note that λ̂ only depends on the aggregate state of the economy.

– Recall that ψ′
i > 0, so the left hand side of 19 is decreasing in xi (the left hand side is

the marginal savings from switching the marginal task xi from labor to capital, which is
decreasing since for high x labor has a stronger comparative advantage.)

* Consider any task xi < λ which also satisfies xi < λ̂. For any such task, the left side
of this equation must therefore be positive. This is only possible if ΛG

ℓ0i (xi) > 0 =
ΛG

k0i (xi) where the latter equality follows from the fact that at most one of ΛG
ℓ0i (xi)

and ΛG
k0i (xi) is positive. This task is therefore performed solely by capital, and we

have ki (xi) = YGi (xi).

* For any tasks xi > λ̂ the right side of this equation must be negative. This is only
possible if ΛG

ℓ0i (xi) = 0 < ΛG
k0i (xi) where the former equality follows from the fact

that at most one of ΛG
ℓ0i (xi) and ΛG

k0i (xi) is positive. This task is therefore performed
solely by labor, and we have ℓi (xi) =

YGi(xi)
ψi(xi)

.
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– We can now characterize the entire allocation of tasks to capital and labor of each type.
Define

λ∗
i (λi, wi, rk) = min

(
λ, λ̂ (wi, rk)

)
For each type i, we have the following configurations.

* A firm will said to be unconstrained with respect to labor type i = s, u if λ̂i (wi, rk) ≤
λi =⇒ λ∗

i (λi, wi, rk) = λ̂ (·). Such a firm has labor i and capital i demands that
are independent of their technology level λ. In the dynamic problem of the firm,
any firm which expects to be unconstrained with respect to labor type i at date t + 1
given its technology at date t will optimally choose to not invest in technological
upgrading.

* A firm will said to be constrained with respect to labor type i = s, u if λ̂i (wi, rk) >
λi =⇒ λ∗

i (λi, wi, rk) = λ. Such a firm has labor i and capital i demands that are
constrained by their technology state λi. Such firms will invest in technological
upgrading.

* Regardless of constraint status, a firm’s demands for labor and capital are character-
ized by

ℓi (xi) =

{
0 xi ≤ λ∗

i (λi, wi, rk)
YG(xi)
ψi(xi)

xi > λ∗
i (λi, wi, rk)

ki (xi) =

{
YG (xi) xi ≤ λ∗

i (λi, wi, rk)

0 xi > λ∗
i (λi, wi, rk)

* In what follows, I’ll drop the arguments in λ̂ and λ∗ for clarity of exposition, but it
should be understood that these are functions of the firm’s state and the aggregate
state.

• Cost Minimization, part 3: Factor demands by a firm

– Let’s consider a firm s = (λs, λu, z).

– Given the allocation rules characterized above, we can show from the focs for ℓi (xi) and
ki (xi) that

ΛG
yi (xi) =

{
rk xi ≤ λ∗

i
wi

ψi(xi)
xi > λ∗

i

which is intuitive, since ΛG
yi (xi) being the multiplier on the production function for each

task is also the marginal cost of each task, by the Envelope Theorem.

– From the foc for YGi (xi) we get ΛG
yi (xi) = ΛG

i

(
Gi
YGi

) 1
ρ

=⇒ YGi (xi) = Gi

(
ΛG

yi(xi)

ΛG
i (xi)

)−ρ

.

Raise both sides to the power ρ−1
ρ and integrate over the task index xi, to get

G
ρ−1

ρ

i = G
ρ−1

ρ

i

∫ 1

0

(
ΛG

yi (xi)

ΛG
i (xi)

)1−ρ

dxi

where the left side follows from the definition of the production function for each task
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aggregate. This gives

ΛG
i =

[∫ 1

0
ΛG

yi (xi)
1−ρ dxi

] 1
1−ρ

Partition the region of integration [0, 1] = [0, λ∗
i ] ∪ [λ∗

i , 1] to get

ΛG
i =

[∫ λ∗
i

0
r1−ρ

k dxi +
∫ 1

λ∗
i

w1−ρ
i ψi (xi)

ρ−1 dxi

] 1
1−ρ

But ΛG
i is the lagrange multiplier on the technology constraint for the production of Gi

and is therefore the marginal cost of a unit of Gi to the firm, by the Envelope Theorem.
Thus,

pGi (λi, wi, rk) =

[
r1−ρ

k λ∗
i + w1−ρ

i

∫ 1

λ∗
i

ψi (xi)
ρ−1 dxi

] 1
1−ρ

Conditional on a value for λ∗
i , this is isomorphic to the cost function for a CES production

function. The key difference here is that the share parameters are now endogenous. This
makes the model a microfoundation for papers like Dinlersoz and Wolf (2018) which
assume that firms directly choose their share parameters.

– Finally, from the foc for Gi, we know that48

ΛG
i = z

(y
z

) 1
σ

µiG
− 1

σ
i Λy,F

=⇒ Gi =
y
z

(
ΛG

i
µizΛy,F

)−σ

=⇒ µiG
σ−1

σ
i = µσ

i

(y
z

) σ−1
σ

zσ−1
(

pGi(·)
Λy,F

)1−σ

From the production function,

y = z
[
µGu (·)

σ−1
σ + (1 − µ)Gs (·)

σ−1
σ

] σ
σ−1

=⇒
(y

z

) σ−1
σ

=

[
µσzσ−1

(
pGu(·)
Λy,F

)1−σ (y
z

) σ−1
σ

+ (1 − µ)σzσ−1
(

pGs(·)
Λy,F

)1−σ (y
z

) σ−1
σ

]

=⇒ Λy,F =
1
z

[
µσ pGu(·)1−σ + (1 − µ)σ pGs(·)1−σ

] 1
1−σ

Since Λy,F is the Lagrange multiplier on the production function of the firm, it is also the
ultimate marginal cost of production.

48We showed above that Λy,F > 0 so the production function equation holds with equality, i.e. firms choose not to
make use of their “free disposal” option, which is intuitive.
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A.6 Existence of a Steady State

I show that a steady state using a series of claims. Throughout, I will use the notation π̃ (λ) ≡
π (λ, 1), i.e. π̃ (λ) is the profit function for a firm with technology feasibility cutoffs λ and unit TFP
(z = 1). Analogously, recall that C̃F (λ) is the unit cost function for a firm with unit productivity.

Clearly, we have π̃ (λ) = Y
αα

(
C̃F(λ)
α−1

)1−α
. Note that

π (λ, z) =
Y
αα

(
CF (λ, z)

α − 1

)1−α

= zα−1 Y
αα

(
C̃F (λ, z)

α − 1

)1−α

= zα−1π̃ (λ)

Claim 5. If r̄ > 0 and κi > 0 then the policy functions for firms are weakly increasing in z. That is,
letting gi (λ, z) be the policy function for λ′

i, we have gi (λ, z′) ≥ gi (λ, z) for z′ ≥ z.

Proof. The proof strategy closely mimics the one in Hubmer and Restrepo (2021). Consider a firm
with current state (λ, z) at date t. The choice of g (λ, z) = (gs (λ, z) , gu (λ, z)) is characterized by

g (λ, z) = arg max
λ′≥λ

−∑
i

κi
(
λ′

i − λi
)
+

1 − pE

1 + r
E
[
Vt+1

(
λ′, z′

)
| z
]

(20)

Define

Ωit+1
(
λ′, z

)
=

∂E (Vt+1 (λ
′, z′) | z)

∂λi

which is the expected marginal benefit of raising the chosen cutoff parameter λi for a firm that has
chosen the vector λ′.

The Envelope Theorem implies that

Ωit (λ, z) =
∂π̃t (λ)

∂λi
E
((

z′
)α−1 | z

)
+ (1 − pE)min

[
κiYt+1,

Ωit+1 (λ, z′)
1 + r̄

∣∣∣∣z]
where the minimum operator accounts for the fact that for some states of the world, the constraint
λ′

i ≥ λi will bind, in which case the firm will continue with the same value of the parameter as it
entered the period with.

For every (t, λ) define the sequence

Ω(1)
it (λ, z) =

∂π̃t (λ)

∂λi
E
((

z′
)α−1 | z

)
Ω(n+1)

it (λ, z) =
∂π̃t (λ)

∂λi
E
((

z′
)α−1 | z

)
+ (1 − pE)E

{
min

[
κiYt+1,

Ω(n)
it+1 (λ, z′)

1 + r̄

] ∣∣∣∣z
}

I now show that for all (t, λ) that each term of this sequence is weakly increasing in z. The proof is
by induction on n. The base case n = 1 follows from the fact that E

(
(z′)α−1 | z

)
is increasing in z

as long as the persistence of the process for z, ρz > 0, and since ∂π̃(λ)
∂λi

≥ 0 since an increase in λi

always weakly reduces costs. Suppose the statement is true for case n, i.e. that Ω(n)
it (λ, z) is weakly
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increasing in z for any t, λ and n ≤ N. By definition,

Ω(N+1)
it (λ, z) =

∂π̃t (λ)

∂λi
E
((

z′
)α−1 | z

)
+ (1 − pE)E

{
min

[
κiYt+1,

Ω(N)
it+1 (λ, z′)

1 + r̄

] ∣∣∣∣z
}

The first term is once again weakly increasing in z. The term Ω(N)
it+1 (λ, z′) is increasing in z′ and the

distribution of z′ for higher z first-order-stochastically-dominates the distribution of z′ for a lower
value. Thus, the expectation of the minimum is itself weakly increasing in z. This completes the
inductive step.

Finally, note that Ωt (λ, z) = limn→∞ Ω(n)
t (λ, z). Since the set of weakly increasing functions is

closed, Ωt (λ, z) must itself be increasing in z. Thus, we have shown that E (Vt+1 (λ
′, z′) | z), and

hence the maximand in equation 20, satisfies increasing differences in (λ′
s, z) and (λ′

u, z). I now
show that the maximand is supermodular in the choice variables λ′. To do this, it is sufficient to
show that the cross partial derivative of the maximand is positive, which in turn is guaranteed as
long as ∂2π̃(λ)

∂λs∂λu
≥ 0. But since

∂2CFt

∂λs∂λu
≥ 0

with strict positivity when λs < λ̂st, λu < λ̂ut and α > 1, we know that

∂2π̃ (λ)

∂λs∂λu
=

∂

∂λs

(
Y
αα

(1 − α)

(α − 1)1−α
C̃F (λ, z)−α ∂C̃F (λ, z)

∂λu

)

=
Y
αα

(α − 1) α

(α − 1)1−α
C̃F (λ, z)−α−1 ∂2C̃F (λ, z)

∂λs∂λu
≥ 0

which implies that the function Ωt (λ, z) is supermodular in λ by theorem 6 in Milgrom and
Shannon (1994). The choice of λ′ lies in the set [λs, 1] × [λu, 1] ⊂ R2, which is a rectangle and
hence a lattice under the ordering < on the real numbers. We have now verified all the conditions
required for application of theorem 5 in Milgrom and Shannon (1994), which guarantees that the
functions gi (λ, z) are nondecreasing in z.

Claim 6. Suppose that gY < r̄. The policy functions are bounded above by the optimality thresholds,
so that gi (λ, z) ≤ λ̂i

(
w′

i
r′k

)
.

Proof. Consider a firm which chooses λ′
i > λi. The first order condition for such a firm is

κiYt =
1 − pE

1 + r̄

[
∂π̃t (λ′)

∂λi
E
((

z′
)α−1 | z

)
+ κiYt+1

]
=⇒ κi

(
Yt

Yt+1
− 1 − pE

1 + r̄

)
=

1 − pE

1 + r̄
1

Yt+1

(
∂π̃t (λ′)

∂λi
E
((

z′
)α−1 | z

))
Under the assumption gY < r̄, the left side is a finite positive constant independent of λ. Now
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consider the right side. Recall that the support of z is unbounded above. We have,

log z′ = ρz log z + ε

=⇒
(
z′
)α−1

= (zρz)α−1 exp (ε (α − 1))

=⇒ E
[(

z′
)α−1

]
= (zρz)α−1

∫ ∞

−∞
{exp (ε)}α−1 dΦ (ε)

The term
∫ ∞
−∞ {exp (ε)}α−1 dΦ (ε) is the α − 1th moment of a lognormal random variable, which

we know is finite. It is clear that limz→∞ E
[
(z′)α−1

]
= ∞ since α > 1 and ρz > 0. The only way

this first order condition can hold for firms with arbitrarily high z is thus if ∂π̃t(λ′)
∂λi

→ 0, which
requires that λi → λ̂i. We have thus shown that the policy function for firms is bounded above by
the optimality threshold.

Claim 7. If r̄ > 0, κi > 0 and qkt = qk, St = S, then a steady state exists in which output Y and
factor prices ws, wu, rk are constant, all firms operate technologies with capital feasibility cutoffs
λ′

i ≥ λ̂i

(
wi
rk

)
and there is no investment in further technology adoption.

Proof. Suppose all firms are in a steady state of the form described.

First, define the objects λ̄it =
∫

λitdM(s)/M̄, so that λ̄it is the mean value of λ across firms

operating at date t. I argue that λ̄it ≥ λ̂i

(
wi
rk

)
. To see this, first observe that λ̄it is bounded above

by 1 and below49 by some positive number, which means that it eventually lies in an ergodic set
with infimum λ∞

i . I claim that these infima must lie above the optimality cutoffs, i.e. λ∞
i ≥ λ̂i

(
wi
rk

)
.

Suppose not, and that λ∞
i < λ̂i

(
wi
rk

)
. For each period t, entrants who entered at date t enter with

cutoff parameters λ̄it ≥ λ̂i

(
wi
rk

)
. By the contradiction hypothesis, for sufficiently large t, some

entrants will enter with λ∞
i < λ̄it < λ̂i

(
wi
rk

)
. Note that entrants’ cutoff parameters are monotone

increasing, and by the unboundedness of TFP z, some firms in the cohort entering at date t will
always draw a high-enough z shock such that they will choose a strictly higher λit+1 > λ̄it. The
distribution of λit+1 for a cohort entering at date t thus first order stochastically dominates the
(degenerate) distribution of λi on entry. This implies that the average λi for firms entering at a
given date t is increasing between t and t + 1. But this then implies that the average λ̄it+1 > λ̄it
almost surely, which contradicts the fact that λ∞

i is the infimum of the ergodic set of λ̄it.

Since the infimum of λ̄it ≥ λ̂i, new entering firms enter with levels of adoption exceeding the
optimality threshold and never choose to adopt new technologies since the marginal benefit of
doing so is 0. A firm with a value of λi exceeding the optimality threshold chooses to produce all
type-i tasks in [0, λ̂i] using capital, irrespective of its value of λi. The allocations of labor of each
type and capital across all firms are therefore equivalent to those of an economy in which all firms
operate exactly the same technology, parametrized by

(
λ̂s, λ̂u

)
and whose labor demands are just

scaled by their TFP.

49If this were not so and λ̄it = 0, then there would be no employment of capital in tasks of type i, which is inconsistent
with equilibrium since the cost of performing the marginal task would be infinite and firms would always prefer to pay
the marginal cost κi to automate the marginal task.
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Note that the fact that entrants enter at the mean level of technology in the economy is an important
assumption for this conclusion.

A.7 The Comparative Advantage Schedule

I assume, following Hubmer and Restrepo (2021), that ψu(z) = Bu

[
z

1−ρ−γu
γu − 1

] 1
1−ρ−γu

and ψs(z) =

Bs

[
z

1−ρ−γs
γs − 1

] 1
1−ρ−γs

where 0 < γi < 1 and ρ̄i = ρ + γi > 1. Define Ψk(λ
∗) = λ∗.

We have,

Ψi(λ
∗) =

∫ 1

λ∗
ψi(z)ρ−1dz = Bρ−1

i

∫ 1

λ∗

(
z

1−ρ−γi
γi − 1

) ρ−1
1−ρ−γi

dz

= Bρ−1
i

[
1 − (λ∗)ai

]1/ai

where ai =
ρ+γi−1

γi
. Consider the cost of production of the task intermediate. We have,

PGi(λ, wi, rk) =
[
r1−ρ

k Ψk(λ
∗
i (·)) + w1−ρ

i Ψi(λ
∗
i (·))

] 1
1−ρ

Suppose the constraint on technology doesn’t bind (this is the case in the steady states I will
consider), so that λ∗

i = λ̂i. Then,

P̂Gi (wi, rk) = rkΨk(λ̂i)
1

1−ρ

[
1 +

(
wi

rk

)1−ρ Ψs(λ̂i)

Ψk(λ̂i)

] 1
1−ρ

=⇒ P̂Gi (wi, rk) = rkλ̂
1

1−ρ

i

[
1 +

(
wi/Bi

rk

)1−ρ (
λ̂−ai

i − 1
)1/ai

] 1
1−ρ

Using that λ̂−ai
i = λ̂

1−ρ̄i
γi

i =
(

wi/Bi
rk

)1−ρ̄i
+ 1, we know that

Ψi(λ̂)
λ̂

= Bρ−1
i

[
(λ∗)−ai − 1

]1/ai
=

Bρ−1
i

(
wi/Bi

rk

)−γ
. Thus,

P̂Gi (wi, rk) = rkλ̂
1

1−ρ

i

[
1 +

(
wi/Bi

rk

)1−ρ (
λ̂−ai

i − 1
)1/ai

] 1
1−ρ

= rkλ̂
1

1−ρ

i

[
1 +

(
wi/Bi

rk

)1−ρ−γi
] 1

1−ρ

= rkλ̂
1
γi
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Now we can solve for factor demands. Recall that

k(s) =
y(s)C̃F(s)σ

z

[
PGu(s)ρ−σ

rρ
k

µσλu +
PGs(s)ρ−σ

rρ
k

(1 − µ)σ λs

]

ℓs(s) =
y(s)

z

(
C̃F(s)
PGs(s)

)σ (PGs(s)
ws

)ρ

(1 − µ)σ Ψs (λs)

ℓu(s) =
y(s)

z

(
C̃F(s)
PGu(s)

)σ (PGu(s)
wu

)ρ

µσΨu (λu)

which implies that in our steady state with λi = λ̂i, i = u, s, we must have

ℓs(s)
k(s)

=

y(s)
z

(
C̃F(s)
PGs(s)

)σ ( PGs(s)
ws

)ρ
(1 − µ)σ Ψs

(
λ̂s
)

y(s)C̃F(s)σ

z

[
µσ
(
λ̂u
) ρ̄u−σ

γu + (1 − µ)σ (λ̂s
) ρ̄s−σ

γs

]
r−σ

k

=

(
1
Bs

) (1 − µ)σ (λ̂s
) ρ̄s−σ

γs

µσ
(
λ̂u
) ρ̄u−σ

γu + (1 − µ)σ (λ̂s
) ρ̄s−σ

γs

(ws/Bs

rk

)−ρ̄s

By an exact analogy,

ℓu(s)
k(s)

=

(
1

Bu

) µσ
(
λ̂u
) ρ̄u−σ

γu

µσ
(
λ̂u
) ρ̄u−σ

γu + (1 − µ)σ (λ̂s
) ρ̄s−σ

γs

(wu/Bu

rk

)−ρ̄u

In this model, it is no longer possible to interpret the γi as the extra induced elasticity of substitution,
because the values of λ̂u and λ̂s will change in response to any change in rk.

Next, consider the capital equation. We have,

k(s) =
y(s)C̃F(s)σ

z

[
µσ
(
λ̂u
) ρ̄u−σ

γu + (1 − µ)σ (λ̂s
) ρ̄s−σ

γs

]
r−σ

k

= Y
(

α

α − 1

)−α C̃σ−α
F

z1−α

[
µσ
(
λ̂u
) ρ̄u−σ

γu + (1 − µ)σ (λ̂s
) ρ̄s−σ

γs

]
r−σ

k

Use the fact that C̃F = rk

[
(1 − µ)σ λ̂

1−σ
γs + µσλ̂

1−σ
γu

] 1
1−σ

and integrate over the distribution to get

K =
∫

k(s)dMSS

= Y
(

α

α − 1

)−α

C̃σ−α
F

[
µσ
(
λ̂u
) ρ̄u−σ

γu + (1 − µ)σ (λ̂s
) ρ̄s−σ

γs

]
r−σ

k

∫
zα−1dMSS

= Y
(

α

α − 1
rk

)−α

 µσ
(
λ̂u
) ρ̄u−σ

γu + (1 − µ)σ (λ̂s
) ρ̄s−σ

γs(
µσ
(
λ̂u
) 1−σ

γu + (1 − µ)σ (λ̂s
) 1−σ

γs

) α−σ
1−σ


∫

zα−1dMSS
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A.8 Solution Algorithm

A.8.1 The Steady State

Given values for exogenous variables qk, S, U and r̄, The steady state is characterized by the
following system of nonlinear equations.

rk = qk (r̄ + δ)

rk =
wi

ψi
(
λ̂i
) , i = s, u

Ψi =
∫ 1

λ̂i

ψi(x)ρ−1dx , i = s, u

PGi =
[
r1−ρ

k λ̂i + w1−ρ
i Ψi

] 1
1−ρ

, i = s, u

C̃F =
[
µσP1−σ

Gu + (1 − µ)σP1−σ
Gs

] 1
1−σ

MSS(s) =

{
M̄ϕstat(z) λ = λss

0 otherwise

S
K

=
(1 − µ)σ Pρ−σ

Gs
wρ

s
Ψs
(
λ̂s
)[

µσ Pρ−σ
Gu
rρ

k
λ̂u + (1 − µ)σ Pρ−σ

Gs
rρ

k
λ̂s

]
U
K

=
µσ Pρ−σ

Gu
wρ

u
Ψu
(
λ̂u
)[

µσ Pρ−σ
Gu
rρ

k
λ̂u + (1 − µ)σ Pρ−σ

Gs
rρ

k
λ̂s

]
K
Y

=

(
α

α − 1
rk

)−α

µσ Pρ−σ
Gu
rρ

k
λ̂u + (1 − µ)σ Pρ−σ

Gs
rρ

k
λ̂s

C̃α−σ
F

 ∫ zα−1dMSS

1 =

(
α

α − 1
C̃F

) [∫
zα−1dMSS(s)

] 1
1−α

where ϕstat(z) is the stationary probability distribution of z resulting from the Markov process
7. Let there be ns points in the idiosyncratic state space (λs, λu, z). This is a system of 12 + ns
equations in the 12 aggregates

rk, ws, wu, λ̂s, λ̂s, Ψs, Ψu, PGs, PGu, C̃F, Y, K

and ns points at which the distribution function M (·) is computed. After computing these aggre-
gates, it is easy to solve for the profit function π(·) using equation 14. Given the profit function
is stationary in a steady state, I iterate backward on the Bellman equation 8 to obtain the value
function and the stationary policy functions associated with the steady state.
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A.8.2 Dynamics

I obtain data on the price of capital qk from the St. Louis Fed’s series for the relative price of
investment goods (PIRIC) and use the share of skilled workers S to be the share of hours worked
by skilled workers, which I calculate from the CPS. I smooth both time series using an HP Filter
with parameter 6.25, since my data is annual. I assume that the absolute value of the growth rate of
both time series declines linearly to zero over the subsequent 20 years, following the literature, and
therefore obtain a long-run steady state level for both exogenous variables. I choose a large number
of periods T such that the economy settles to a new equilibrium at date T. For all dates after the
growth rate of qkt and St has settled to zero, I assume both of these variables are constant at their
terminal values.

To solve for the equilibrium paths for the aggregates wst, wut, rkt, Yt I proceed as follows.

1. Given a constant r̄ and the path for qkt I solve for the path for rkt using the household’s no
arbitrage equation 2.

2. I solve for an initial and a final steady state using the initial values and the terminal values of
qkt and St.

3. I guess paths for {wst, wut, Yt}T
t=0 with t = 0 corresponding to 1980.

(a) Given these paths, I solve backward for the value functions and optimal capital feasibility
cutoff choices made by firms at each date, with the terminal value function at date T
corresponding to the value function for a firm in the long-run steady state.

(b) This gives me the policy functions gλt (s, st) at each date. I use these policy functions
in equation 15 to iterate forward the distribution of firms from date 1 to T with the
initial distribution corresponding to one where all firms use technologies with capital
feasibility cutoffs at the same initial steady state values.

(c) I check three equilibrium conditions, given by equations 16, 17 and 18. If these equations
hold (up to a specified tolerance), I terminate the iterations.

4. Given paths for aggregate prices, it is easy to solve for the paths of the skill premium wst/wut
and the labor share in value added, (wstSt + wutUt) /Yt.
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A.9 Additional Figures

Figure 21: Non-farm Business Sector Labor shares in the data and the counterfactual labor share had the pre-2000
trend in the skilled labor share continued (holding the data on the unskilled labor share unchanged) post 2000. The
counterfactual values for years 2001 and onward are given by the predicted values from a regression of the skilled labor
share on a time trend from 1980 to 2000. Data from the BEA-BLS integrated national income accounts. The labor share
decline in the data between 2000 and 2016 is 6.6 percentage points, while the decline in the counterfactual series is 1.97
percentage points.
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Figure 22: The share of skilled and unskilled workers by industry over time. All data from BLS-BEA integrated
national income accounts. The labor share at the industry level is calculated as the ratio of nominal inputs of college
educated plus nominal inputs of non-college educated workers divided by value added, which is calculated as nominal
gross output less the nominal value of intermediate inputs.
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Figure 23: This figure plots smoothed ten-year changes in the share of total hours worked in an occupation. Occupations
are ranked in increasing order of skill intensity, measured as the share of hours worked by skilled workers. They are
then grouped into percentiles, with each occupation weighted by hours worked in that occupation. Between 1980 and
1990 and 1990 and 2000, growth in employment was concentrated at the top of the skill distribution, which was reflected
in a broad increase in the relative demand for skilled workers. Post 2000, growth in the employment shares in the most
skilled occupations has slowed dramatically.
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Figure 24: This figure plots data on the shares of skilled and unskilled workers constructed using the CPS and
comparable data from the model. To construct the data measures, I first construct composition-adjusted average wages
and labor supply weights for each of five education groups, following Autor (2019). I use these to construct a measure of
the total wage bill, defined as the sum over the five groups of the product of average wages within each group and its
labor supply weight. Next, I construct the skilled labor share of labor income as the share of the wages of the groups of
workers with at least a college degree in the total wage bill. I assign the group with some college education half to the
skilled labor share and half to the unskilled labor share. I obtain the skilled labor share of value added by multiplying
the skilled labor share of labor income with the aggregate labor share time series for the non-farm business sector, which
is the measure of the labor share I use throughout this paper. The model analogue of this object is just the ratio witℓit

Yt
for

i = u, s.
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