The Long-term Decline of the U.S. Job Ladder

Aniket Baksy

Daniele Caratelli

Digit Research Centre University of Sussex Office of Financial Research U.S. Department of Treasury Niklas Engbom NYU Stern CEPR, NBER, & UCLS

The views expressed are our own and do not necessarily reflect those of the OFR or the Department of Treasury.

Outline

Introduction

Methodology

Data, Estimation and Validation

Three Facts about EE Mobility

Three Hypotheses Regarding Decline

Conclusion

Motivation: why EE mobility matters

EE mobility: employer-to-employer moves w/out intervening nonemployment spell

Motivation: why EE mobility matters

- EE mobility: employer-to-employer moves w/out intervening nonemployment spell
- EE mobility is integral for:
 - 1. Micro: life-cycle wage growth
 - 2. Macro: alleviating misallocation

(Topel and Ward, '92)

(Bilal et al. '22)

Motivation: why EE mobility matters

- EE mobility: employer-to-employer moves w/out intervening nonemployment spell
- EE mobility is integral for:
 - 1. Micro: life-cycle wage growth (Topel and Ward, '92)
 - 2. Macro: alleviating misallocation

- (Bilal et al. '22)
- Yet little is known about long run trends in EE mobility in the U.S.
 - Empirical: No data before 1994, data post 1994 have issues *
 - * Conceptual: Want to isolate mobility **up** the job ladder

What we do Literature

1. Propose a method to estimate EE mobility towards higher paying jobs

- * Inferred through lens of prototypical partial equilibrium job-ladder model
- * Using publicly available data from the CPS since 1979

What we do Literature

- 1. Propose a method to estimate EE mobility towards higher paying jobs
 - * Inferred through lens of prototypical partial equilibrium job-ladder model
 - * Using publicly available data from the CPS since 1979
- 2. Establish 3 facts about EE mobility over past half century
 - 1. Fell by more than half since 1979
 - 2. Driven largely by a lower offer arrival rate for employed workers
 - 3. More pronounced for women, less educated, and young workers

What we do . Literature

- 1. Propose a method to estimate EE mobility towards higher paying jobs
 - * Inferred through lens of prototypical partial equilibrium job-ladder model
 - * Using publicly available data from the CPS since 1979
- 2. Establish 3 facts about EE mobility over past half century
 - 1. Fell by more than half since 1979
 - 2. Driven largely by a lower offer arrival rate for employed workers
 - 3. More pronounced for women, less educated, and young workers
- 3. Evaluate 3 hypotheses behind this decline
 - * Are workers better matched on average today?
 - * Decline in matching efficiency?
 - * Increased labor market concentration?

What we do . Literature

- 1. Propose a method to estimate EE mobility towards higher paying jobs
 - * Inferred through lens of prototypical partial equilibrium job-ladder model
 - * Using publicly available data from the CPS since 1979
- 2. Establish 3 facts about EE mobility over past half century
 - 1. Fell by more than half since 1979
 - 2. Driven largely by a lower offer arrival rate for employed workers
 - 3. More pronounced for women, less educated, and young workers
- 3. Evaluate 3 hypotheses behind this decline
 - * Are workers better matched on average today? Unlikely
 - * Decline in matching efficiency? Unlikely
 - * Increased labor market concentration? May account for 50% of decline

Outline

Introduction

Methodology

Data, Estimation and Validation

Three Facts about EE Mobility

Three Hypotheses Regarding Decline

Conclusion

A partial equilibrium job ladder model

Simple Accounting Framework

- Unit mass of risk-neutral, infinitely lived workers
- Mass $n_t = 1 e_t$ of nonemployed:

► Mass *e*^{*t*} of employed:

A partial equilibrium job ladder model

Simple Accounting Framework

- Unit mass of risk-neutral, infinitely lived workers
- Mass $n_t = 1 e_t$ of nonemployed:
 - * get job offer with prob. λ_t^n
 - * draw from *exogenous* wage offer cdf $F_{t+1}^n(w)$ (pdf $f_{t+1}^n(w)$)
 - * assume all offers are accepted
- ► Mass *e*^{*t*} of employed:

A partial equilibrium job ladder model

- Unit mass of risk-neutral, infinitely lived workers
- Mass $n_t = 1 e_t$ of nonemployed:
 - * get job offer with prob. λ_t^n
 - * draw from exogenous wage offer cdf $F_{t+1}^n(w)$ (pdf $f_{t+1}^n(w)$)
 - * assume all offers are accepted
- Mass e_t of employed:
 - * paid a wage w for as long as they are employed
 - * lose job with prob. δ_t
 - * get job offer with prob. λ^e_t
 - * draw from exogenous wage offer distribution $F_{t+1}^{e}(w)$ (pdf $f_{t+1}^{e}(w)$)
 - * only accept offers that pay a higher wage

- Let $g_t(w)$ = share of workers earning wage w and $G_t(w)$ be the cdf.
- ▶ The mass of workers earning w is $g_t(w)e_t$, which evolves according to

$$g_{t+1}(w)e_{t+1} - g_t(w)e_t =$$

- Let $g_t(w)$ = share of workers earning wage w and $G_t(w)$ be the cdf.
- ▶ The mass of workers earning w is $g_t(w)e_t$, which evolves according to

$$g_{t+1}(w)e_{t+1} - g_t(w)e_t = \underbrace{\lambda_t^n \cdot f_{t+1}^n(w) \cdot n_t}_{t}$$

hires from nonemp.

- Let $g_t(w)$ = share of workers earning wage w and $G_t(w)$ be the cdf.
- The mass of workers earning w is $g_t(w)e_t$, which evolves according to

$$g_{t+1}(w)e_{t+1}-g_t(w)e_t = \underbrace{\lambda_t^n \cdot f_{t+1}^n(w) \cdot n_t}_{w}$$

hires from nonemp.

$$-\underbrace{\delta_t \cdot g_t(w) \cdot e_t}$$

separations to nonemp.

- Let $g_t(w)$ = share of workers earning wage w and $G_t(w)$ be the cdf.
- The mass of workers earning w is $g_t(w)e_t$, which evolves according to

$$g_{t+1}(w)e_{t+1} - g_t(w)e_t = \underbrace{\lambda_t^n \cdot f_{t+1}^n(w) \cdot n_t}_{w}$$

hires from nonemp.

$$-\underbrace{\delta_t \cdot g_t(w) \cdot e_t}$$

separations to nonemp.

+
$$\lambda_t^e \cdot f_{t+1}^e(w) \cdot G_t(w)e_t$$

EE poaching hires

- Let $g_t(w)$ = share of workers earning wage w and $G_t(w)$ be the cdf.
- ▶ The mass of workers earning w is $g_t(w)e_t$, which evolves according to

$$g_{t+1}(w)e_{t+1} - g_t(w)e_t = \underbrace{\lambda_t^n \cdot f_{t+1}^n(w) \cdot n_t}_{w}$$

hires from nonemp.

$$-\underbrace{\delta_t \cdot g_t(w) \cdot e_t}$$

separations to nonemp.

$$+ \underbrace{\lambda_t^e \cdot f_{t+1}^e(w) \cdot G_t(w)e_t}_{-}$$

EE poaching hires

$$-\underbrace{\lambda_t^e \cdot (1 - F_{t+1}^e(w)) \cdot g_t(w)e_t}_{\text{EE poaching separations}}$$

Deriving EE mobility

▶ Integrating (1) and rearranging

Deriving EE mobility

Integrating (1) and rearranging

EE mobility is

Deriving EE mobility

Integrating (1) and rearranging

EE mobility is

► Recover EE given G_t , G_{t+1} , F_{t+1}^n , e_t , e_{t+1} , δ_t , λ_t^n , no need to observe $F_{t+1}^e(w)$

Outline

Introduction

Methodology

Data, Estimation and Validation

Three Facts about EE Mobility

Three Hypotheses Regarding Decline

Conclusion

Data: The Current Population Survey (CPS), 1979-2023

- $\blacktriangleright\,$ Survey of $\approx\,$ 60,000 US households conducted by Census Bureau for BLS
- "4-8-4" rotation pattern

- ▶ Month-to-month changes in employment status → Pin down e_t , e_{t+1} , λ_t^n , δ_t
- ▶ $\approx 25\%$ ("outgoing rotation groups") report earnings → wage distbns G, F → Details

▶ In SS, employment in and outflows equal $(\delta_t e_t = \lambda_t^n (1 - e_t))$

$$\Rightarrow$$
 Can show that $EE_t = \delta_t \int_{-\infty}^{\infty} \frac{F_{t+1}^n(w) - G_t(w)}{G_t(w)} dG_t(w)$

► In SS, employment in and outflows equal $(\delta_t e_t = \lambda_t^n (1 - e_t))$

$$\Rightarrow$$
 Can show that $EE_t = \delta_t \int_{-\infty}^{\infty} rac{F_{t+1}^n(w) - G_t(w)}{G_t(w)} dG_t(w)$

► EE mobility identified by gap $\equiv F_{t+1}^n(w) - G_t(w)$

- ► In SS, employment in and outflows equal $(\delta_t e_t = \lambda_t^n (1 e_t))$ ⇒ Can show that $EE_t = \delta_t \int_{-\infty}^{\infty} \frac{F_{t+1}^n(w) - G_t(w)}{G_t(w)} dG_t(w)$
- ► EE mobility identified by gap $\equiv F_{t+1}^n(w) G_t(w)$

- ► In SS, employment in and outflows equal $(\delta_t e_t = \lambda_t^n (1 e_t))$ ⇒ Can show that $EE_t = \delta_t \int_{-\infty}^{\infty} \frac{F_{t+1}^n(w) - G_t(w)}{G_t(w)} dG_t(w)$
- EE mobility identified by gap $\equiv F_{t+1}^n(w) G_t(w)$ which shrinks over time

EE Mobility Up the Job Ladder, 1979-2023

Validation

Exercise 1: Compare our series, post '96, vs SIPP

Validation

- Exercise 1: Compare our series, post '96, vs SIPP
- Exercise 2: Compare NLSY '79 vs our method applied to the same cohort

▶ FMP

Outline

Introduction

Methodology

Data, Estimation and Validation

Three Facts about EE Mobility

Three Hypotheses Regarding Decline

Conclusion

Three Facts on EE mobility

- 1. EE mobility declined by nearly half since 1979
- 2. Driven largely by a lower job finding rate for the employed
- 3. Decline larger for female, lower educated and young workers

Three Facts on EE mobility

1. EE mobility declined by nearly half since 1979

2. Driven largely by a lower job finding rate for the employed

3. Decline larger for female, lower educated and young workers

Fact 1: EE mobility decline since 1979

- EE mobility towards higher-paying jobs declined by half from 1979 to 2023
- Much of the decline occurs in the 1980s/90s

On-the-job Wage Growth

Unobservables

Three Facts on EE mobility

- 1. EE mobility declined by nearly half since 1979
- 2. Driven largely by a lower job finding rate for the employed
- 3. Decline larger for female, lower educated and young workers

Fact 2. Driven largely by a lower job finding rate for employed

Fact 2. Driven largely by a lower job finding rate for employed

Three Facts on EE mobility

- 1. EE mobility declined by nearly half since 1979
- 2. Driven largely by a lower job finding rate for the employed
- 3. Decline larger for female, lower educated and young workers

Fact 3: Larger decline for women, less educated, young

t,a,c > cohort

Fact 3: Shift-share exercise (1980-84 to 2014-19)

$$EE_{1} - EE_{0} = \sum_{i \in \mathcal{I}} \left(\underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i}\right) EE_{0}^{i}}_{\text{composition effect}} + \underbrace{\omega_{0}^{i} \left(EE_{1}^{i} - EE_{0}^{i}\right)}_{\text{within-group effect}} + \underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i}\right) \left(EE_{1}^{i} - EE_{0}^{i}\right)}_{\text{covariance}} \right)$$

	Gender	Education	Age	
Composition	-3.3%	11.9%	15.2%	
Within	100.3%	98.5%	98.0%	
Covariance	2.9%	-10.5%	-13.2%	

Fact 3: Shift-share exercise (1980-84 to 2014-19)

$$EE_{1} - EE_{0} = \sum_{i \in \mathcal{I}} \left(\underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i} \right) EE_{0}^{i}}_{\text{composition effect}} + \underbrace{\omega_{0}^{i} \left(EE_{1}^{i} - EE_{0}^{i} \right)}_{\text{within-group effect}} + \underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i} \right) \left(EE_{1}^{i} - EE_{0}^{i} \right)}_{\text{covariance}} \right)$$

	Gender	Education	Age	
Composition	-3.3%	11.9%	15.2%	
Within	100.3%	98.5%	98.0%	
Covariance	2.9%	-10.5%	-13.2%	

Fact 3: Shift-share exercise (1980-84 to 2014-19)

$$EE_{1} - EE_{0} = \sum_{i \in \mathcal{I}} \left(\underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i} \right) EE_{0}^{i}}_{\text{composition effect}} + \underbrace{\omega_{0}^{i} \left(EE_{1}^{i} - EE_{0}^{i} \right)}_{\text{within-group effect}} + \underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i} \right) \left(EE_{1}^{i} - EE_{0}^{i} \right)}_{\text{covariance}} \right)$$

	Gender	Education	Age	Age imes Education
Composition	-3.3%	11.9%	15.2%	28.5%
Within	100.3%	98.5%	98.0%	90.3%
Covariance	2.9%	-10.5%	-13.2%	-18.8%

Outline

Introduction

Methodology

Data, Estimation and Validation

Three Facts about EE Mobility

Three Hypotheses Regarding Decline

Conclusion

Consider 3 hypotheses consistent with a decline in EE mobility.

- 1. Fall in separation probability
- 2. Better matched workers
- 3. Higher firm labor market concentration

Fall in separation probability?

- Higher separation means workers must re-start job ladder climb more often
- In steady state we have

Fall in separation probability? Unlikely

- Higher separation means workers must re-start job ladder climb more often
- In steady state we have

Better matched workers?

Did EE mobility fall because workers are better matched today?

$$EE_{t} = \underbrace{\lambda_{t}^{e}}_{\text{job finding prob.}} \times \underbrace{\int \left(1 - F_{t+1}^{e}(w)\right) dG_{t}(w)}_{\text{acceptance prob.}}$$

Better matched workers?

Did EE mobility fall because workers are better matched today?

$$EE_{t} = \underbrace{\lambda_{t}^{e}}_{\text{job finding prob.}} \times \underbrace{\int \left(1 - F_{t+1}^{e}(w)\right) dG_{t}(w)}_{\text{acceptance prob.}}$$

Recall that assuming $F^e = F^n$, all EE decline is from job-finding prob.

Better matched workers? Unlikely

Did EE mobility fall because workers are better matched today?

$$EE_{t} = \underbrace{\lambda_{t}^{e}}_{\text{job finding prob.}} \times \underbrace{\int \left(1 - F_{t+1}^{e}(w)\right) dG_{t}(w)}_{\text{acceptance prob.}}$$

Recall that assuming $F^e = F^n$, all EE decline is from job-finding prob.

Higher firm labor market concentration

- Did EE mobility fall because of increased firm market concentration?
 - Higher market concentration lowers workers' opportunities to switch employers

 $\Delta EE \text{ vs } \Delta Firms / worker$

In panel of states since 1980, we find

► +ve relationship b/n firms/worker & ΔEE

 $\Delta \lambda_e$ vs $\Delta Firms / worker$

In panel of states since 1980, we find

▶ +ve relationship b/n firms/worker & ΔEE

 \blacktriangleright driven largely by $\Delta \lambda_e$

$\Delta Acc.$ Prob. vs $\Delta Firms / worker$

In panel of states since 1980, we find

▶ +ve relationship b/n firms/worker & ΔEE

► driven largely by $\Delta \lambda_e$

 \blacktriangleright and not by \triangle acceptance rate

In panel of states since 1980, we find

- ▶ +ve relationship b/n firms/worker & ΔEE
- ► driven largely by $\Delta \lambda_e$
- \blacktriangleright and not by $\Delta \texttt{acceptance}$ rate
- Δ firms/worker \implies over half of $\downarrow EE$

Outline

Introduction

Methodology

Data, Estimation and Validation

Three Facts about EE Mobility

Three Hypotheses Regarding Decline

Conclusion

Conclusion

▶ We estimate EE mobility halved since 1979 using job-ladder model and public data

- ► As a consequence, associated annual wage growth fell by over 1 p.p.
- Bigger declines for women, non-college educated workers, and newer cohorts
- Framework suggests EE decline:
 - Unlikely to be driven by better matches or worse matching efficiency
 - Consistent with rising labour market concentration

Thank You!

Appendix

Our Method: An Accounting Framework Back

- Let w denote a residualized wage.
- Suppose we observe, between t and t + 1,

• $G_t(w)$ workers earning less than w at t and $G_{t+1}(w)$ at t+1

Our Method: An Accounting Framework Back

- Let w denote a residualized wage.
- Suppose we observe, between t and t + 1,
 - $G_t(w)$ workers earning less than w at t and $G_{t+1}(w)$ at t+1
 - ▶ $H_t(w)$ non-employed workers find a job paying at least w

$$\underbrace{G_t(w)}_{\text{earn } \leq w \text{ at } t} + \underbrace{H_t(w)}_{\text{inflows}}$$

Our Method: An Accounting Framework

- Let w denote a residualized wage.
- Suppose we observe, between t and t + 1,
 - $G_t(w)$ workers earning less than w at t and $G_{t+1}(w)$ at t+1
 - ▶ $H_t(w)$ non-employed workers find a job paying at least w
 - \triangleright $S_t(w)$ workers earning at least w at t separate to non-employment

Our Method: An Accounting Framework Back

- Let w denote a residualized wage.
- Suppose we observe, between t and t + 1,
 - $G_t(w)$ workers earning less than w at t and $G_{t+1}(w)$ at t+1
 - ▶ $H_t(w)$ non-employed workers find a job paying at least w
 - ▶ $S_t(w)$ workers earning at least w at t separate to non-employment

 \implies Mass $x_t(w)$ workers must have moved from $\leq w$ to above w

Our Method: An Accounting Framework - Back

- Let w denote a residualized wage.
- Suppose we observe, between t and t + 1,
 - $G_t(w)$ workers earning less than w at t and $G_{t+1}(w)$ at t+1
 - ▶ $H_t(w)$ non-employed workers find a job paying at least w
 - \triangleright $S_t(w)$ workers earning at least w at t separate to non-employment

$$\underbrace{\mathcal{G}_t(w)}_{\mathsf{earn} \leq w \; \mathsf{at} \; t} + \underbrace{\mathcal{H}_t(w)}_{\mathsf{inflows}} - \underbrace{\mathcal{S}_t(w)}_{\mathsf{outflows}} + \underbrace{\mathsf{x}_t(w)}_{\mathsf{EE} \; \mathsf{to} \geq w} = \underbrace{\mathcal{G}_{t+1}(w)}_{\mathsf{earn} \leq w \; \mathsf{at} \; t+1}$$

 \implies Mass $x_t(w)$ workers must have moved from $\leq w$ to above w

▶ If only source of residual wage growth, $x_t(w)$ is #EE moves to higher wage!

Literature . Back

Construct EE transition probability since 1979

Fallick and Fleischman '04; Nagypal '08; Hyatt and Spletzer ('13, '16, '17); Molloy et al. '16; Haltwanger et al. '18; Fujita, Moscarini and Postel-Vinay '23, Molloy, Smith and Wozniak '24

Labor market flow balance accounting applied to EE mobility

Jolivet, Postel-Vinay and Robin '06; Elsby, Michaels and Solon '09; Shimer '12

Explanations for decline in EE mobility

Molloy et al. '16; Mercan '17; Macaluso, Hershbein and Yeh, '19; Azar et al. '20; Prager and Schmitt '21; Azar, Marinescu and Steinbaum '22; Berger, Herkenhoff and Mongey '22; Handwerker and Dey '22; Pries and Rogerson '22, Rinz '22; Bagga '23

Validation: post 1996 · Back

Allowing on-the-job wage growth

- Allow wages to grow at rate ξ with tenure
- Small effects: OTJ wage growth much smaller than wage rise after EE move

On-the-job wage growth rate

- ▶ Allow residual wages to grow at rate ξ with tenure
- Small effects: OTJ wage growth much smaller than wage rise after EE move

Back

Controlling for Unobservables

- Observe wages for each individual twice: once in month 4 and once in month 16
- Residualize wages on past wages for same individual

Individual FEs

Back

Individual Fixed Effects

Observe wages for each individual twice: once in month 4 and once in month 16

Back

 \implies Residualize wages on individual FEs

EE Moves are only source of residual wage growth

Key for identification: EE moves are only source of residual wage growth

Back

Time - Age - Cohort Decomposition

Back

Decompose ΔEE_t into time, age and cohort effects under assumption that age effects are stable between ages 50-59.

Time - Age - Cohort Decomposition

Back

Decompose ΔEE_t into time, age and cohort effects under assumption that age effects are stable between ages 50-59.

Fact 3: Shift-share exercise (1980-84 to 2014-19)

$$EE_{1} - EE_{0} = \sum_{i \in \mathcal{I}} \left(\underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i} \right) EE_{0}^{i}}_{\text{composition effect}} + \underbrace{\omega_{0}^{i} \left(EE_{1}^{i} - EE_{0}^{i} \right)}_{\text{within-group effect}} + \underbrace{\left(\omega_{1}^{i} - \omega_{0}^{i} \right) \left(EE_{1}^{i} - EE_{0}^{i} \right)}_{\text{covariance}} \right)$$

	Gender	Race	Education	Age	$Age{\times}Education$
Composition	-3.3%	-1.6%	11.9%	15.2%	28.5%
Within	100.3%	100.4%	98.5%	98.0%	90.3%
Covariance	2.9%	1.1%	-10.5%	-13.2%	-18.8%
Total	100%	100%	100%	100%	100%

Back

Within-state changes, 1980s-2010s

Back

	(1) EE	$(2) \\ \Delta w$	(3) λ ^e	$\begin{array}{c} (4) \\ \lambda^n \end{array}$
Firms per worker	1.793*** (0.556)	0.094 (0.239)	1.699*** (0.554)	-0.063 (0.102)
Emp. Share of Large Firms $(\geq 1000 \text{ emp.})$	-1.535*** (0.414)	-0.160 (0.205)	-1.375*** (0.443)	-0.231 (0.136)
Emp. Share of Small Firms (< 100 emp.)	2.009*** (0.675)	0.109 (0.230)	1.900*** (0.675)	0.161 (0.151)

 $y_{st} = \beta imes Conc_{st} + \xi_s + \phi_t + \varepsilon_{st}$

- Sample: individuals aged 16+, non-missing demo. info, residing in 50 states + DC
- Link individuals across months using validated longitudinal identifiers (cpsidv)
- ▶ Wages = usual earnings/week divided by usual hours worked/week, deflate by CPI
 - ▶ Residual wages: predicted values from running $w_{i,t} = \xi_{a,r,g,e,y} + \xi_{s,t} + \varepsilon_{i,t}$
 - winsorize top/bottom 0.5%, group into 100 bins (robust to #bins)

Data Details

Back

Estimate offer distribution using weighted shares of workers hired from non-employment in each wage bin

$$f_{t,i}^{n} = \frac{1}{dw_{i}} \frac{\sum_{j} \mathbb{1}_{b_{i-1} \leq \widehat{w}_{t,j} < b_{i}} * \mathbb{1}_{hire_{t,j}^{n} = 1} * weight_{t,j}}{\sum_{j} \mathbb{1}_{hire_{t,j}^{n} = 1} * weight_{t,j}}$$
(1)

Estimate wage distribution using weighted shares of all employed workers in each wage bin

$$g_{t,i} = \frac{1}{dw_i} \frac{\sum_j \mathbb{1}_{b_{i-1} \le \widehat{w}_{t,j} < b_i} * weight_{t,j}}{\sum_j weight_{t,j}}$$
(2)